33 resultados para condition monitoring system
Resumo:
Non-intrusive monitoring of health state of induction machines within industrial process and harsh environments poses a technical challenge. In the field, winding failures are a major fault accounting for over 45% of total machine failures. In the literature, many condition monitoring techniques based on different failure mechanisms and fault indicators have been developed where the machine current signature analysis (MCSA) is a very popular and effective method at this stage. However, it is extremely difficult to distinguish different types of failures and hard to obtain local information if a non-intrusive method is adopted. Typically, some sensors need to be installed inside the machines for collecting key information, which leads to disruption to the machine operation and additional costs. This paper presents a new non-invasive monitoring method based on GMRs to measure stray flux leaked from the machines. It is focused on the influence of potential winding failures on the stray magnetic flux in induction machines. Finite element analysis and experimental tests on a 1.5-kW machine are presented to validate the proposed method. With time-frequency spectrogram analysis, it is proven to be effective to detect several winding faults by referencing stray flux information. The novelty lies in the implement of GMR sensing and analysis of machine faults.
Resumo:
In view of the increasingly complexity of services logic and functional requirements, a new system architecture based on SOA was proposed for the equipment remote monitoring and diagnosis system. According to the design principles of SOA, different levels and different granularities of services logic and functional requirements for remote monitoring and diagnosis system were divided, and a loosely coupled web services system was built. The design and implementation schedule of core function modules for the proposed architecture were presented. A demo system was used to validate the feasibility of the proposed architecture.
Resumo:
Monitoring is essential for conservation of sites, but capacity to undertake it in the field is often limited. Data collected by remote sensing has been identified as a partial solution to this problem, and is becoming a feasible option, since increasing quantities of satellite data in particular are becoming available to conservationists. When suitably classified, satellite imagery can be used to delineate land cover types such as forest, and to identify any changes over time. However, the conservation community lacks (a) a simple tool appropriate to the needs for monitoring change in all types of land cover (e.g. not just forest), and (b) an easily accessible information system which allows for simple land cover change analysis and data sharing to reduce duplication of effort. To meet these needs, we developed a web-based information system which allows users to assess land cover dynamics in and around protected areas (or other sites of conservation importance) from multi-temporal medium resolution satellite imagery. The system is based around an open access toolbox that pre-processes and classifies Landsat-type imagery, and then allows users to interactively verify the classification. These data are then open for others to utilize through the online information system. We first explain imagery processing and data accessibility features, and then demonstrate the toolbox and the value of user verification using a case study on Nakuru National Park, Kenya. Monitoring and detection of disturbances can support implementation of effective protection, assist the work of park managers and conservation scientists, and thus contribute to conservation planning, priority assessment and potentially to meeting monitoring needs for Aichi target 11.