101 resultados para cingulate gyrus


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To determine whether in cases of variant Creutzfeldt-Jakob disease (vCJD), the florid-type plaques are derived from the diffuse plaques or whether the 2 plaque types develop independently. Material: Blocks of frontal, parietal, occipital and temporal neocortex and cerebellar cortex from 11 cases of vCJD. Method: The density, distribution and spatial pattern of the florid and diffuse plaques were determined in each brain region using spatial pattern analysis. Results: The density of the diffuse plaques was significantly greater than that of the florid plaques in most areas. The ratio of the diffuse to florid plaques varied between brain regions and was maximal in the molecular layer of the cerebellum. The densities of the florid and diffuse plaques were positively correlated in the parietal cortex, occipital cortex, the inferior temporal gyrus and the dentate gyrus. Plaque densities were not related to disease duration. In the cerebral cortex, the diffuse plaques were more commonly evenly distributed or occurred in large clusters along the cortex parallel to the pia mater compared with the florid plaques which occurred more frequently in regularly distributed clusters. Conclusion: The florid plaques may not be derived from the diffuse plaques, the 2 plaque types appearing to develop independently with unique factors involved in their pathogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To test the hypothesis that the distribution of the pathology in variant Creutzfeldt-Jakob disease (vCJD) represents haematogenous spread of the disease, we studied the spatial correlation between the vacuolation, prion protein (PrP) deposits, and the blood vessel profiles in the cerebral cortex, hippocampus, dentate gyrus, and cerebellum of 11 cases of the disease. In the majority of areas, there were no significant spatial correlations between either the vacuolation or the diffuse type of PrP deposit and the blood vessels. By contrast, a consistent pattern of spatial correlation was observed between the florid PrP deposits and blood vessels mainly in the cerebral cortex. The frequency of positive spatial correlations was similar in different anatomical areas of the cerebral cortex and in the upper compared with the lower laminae. Hence, with the exception of the florid deposits, the data do not demonstrate a spatial relationship between the pathological features of vCJD and blood vessels. The spatial correlation of the florid deposits and blood vessels may be attributable to factors associated with the blood vessels that promote the aggregation of PrP to form a condensed core rather than reflecting the haematogenous spread of the disease. © 2003 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study tested the hypothesis that variations in the density of the florid prion protein (PrP) plaques in the brain of patients with variant Creutzfeldt-Jakob disease (vCJD) were spatially related to blood vessels. In 81% of areas of the cerebral cortex sampled and in 37% of the remaining areas, which included the hippocampus, dentate gyrus, and cerebellum, there was a positive spatial correlation between the density of the florid plaques and the larger blood vessel profiles. The frequency of the positive spatial correlations was similar in different anatomical areas of the cerebral cortex and in the upper compared with the lower cortical laminae. The data support the hypothesis that the florid plaques cluster around the larger blood vessels in vCJD, the density of associated plaques increasing with vessel size. The development of florid plaques close to blood vessels may be due to factors associated with the blood vessels that enhance the aggregation of PrP to form the dense cores of florid plaques and is unlikely to reflect the haematogenous spread of PrP into the brain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spatial patterns of the prion protein (PrP) deposits were studied in immunostained sections of areas of the cerebral cortex, hippocampus, dentate gyrus, and the molecular layer of the cerebellum in 11 cases of variant Creutzfeldt-Jakob disease (vCJD). Clustering of PrP deposits, with a regular distribution of the clusters parallel to the tissue boundary, was the most common spatial pattern observed. Two morphological types of PrP deposit were recognised, those consisting of a condensed core (florid deposits) and those deposits lacking a condensed core (non-florid deposits). The florid and non-florid PrP deposits exhibited a different profile of spatial patterns. First, the florid deposits exhibited a regularly distributed pattern of clusters more frequently than the non-florid deposits. Second, the florid deposits formed larger clusters (greater than1,600 µm in diameter) less frequently than the non-florid deposits. In the areas of the cerebral cortex that exhibited a regular distribution of PrP deposit clusters, the cluster size of the deposits approximated that of the groups of cells of the cortico-cortical pathway origin in only 12% of analyses. No significant differences in the frequency of the different types of spatial pattern were observed in different brain regions, or in the cerebral cortex between the upper and lower laminae. It was concluded that the spatial patterns of the PrP deposits in the cerebral cortex in vCJD are unlikely to reflect the degeneration of the cortico-cortical pathways as has been reported in sporadic CJD (sCJD). In addition, different factors could be involved in the development of the deposits with and without a condensed core.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vacuolation ('spongiform change') and prion protein (PrP) deposition were quantified in the cerebral cortex, hippocampus, dentate gyrus and molecular layer of the cerebellum in 11 cases of variant Creutzfeldt-Jakob disease (vCJD). The density of vacuoles was greater in the cerebral cortex compared to the hippocampus, dentate gyrus and cerebellum. Within the cortex, vacuole density was significantly greater in the occipital compared to the temporal lobe and the density of surviving neurones was greatest in the occipital lobe. The density of the non-florid PrP plaques was greater in the cerebellum compared to the other brain areas. There were significantly more florid-type PrP plaques in the cerebral cortex compared to the hippocampus and the molecular layer of the cerebellum. No significant correlations were observed between the densities of the vacuoles and the PrP plaques. The densities of vacuoles in the parietal cortex and the non-florid plaques in the frontal cortex were positively correlated with the density of surviving neurones. The densities of the florid and the non-florid plaques were positively correlated in the parietal cortex, occipital cortex, inferior temporal gyrus and dentate gyrus. The data suggest: (i) vacuolation throughout the cerebral cortex, especially in the occipital lobe, but less evident in the hippocampus and molecular layer of the cerebellum; (ii) the non-florid plaques are more common than the florid plaques and predominate in the molecular layer of the cerebellum; and (iii) either the florid plaques develop from the non-florid plaques or both types are morphological variants resulting from the same degenerative process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The vacuolation (spongiform change) and prion protein (PrP) deposition were quantified in the cerebral cortex, hippocampus and cerebellum of 11 patients with sporadic Creutzfeldt-Jakob disease (CJD). The density of the vacuolation, averaged over patients, was greatest in the occipital cortex and cerebellum and least in the dentate gyrus. The degree of PrP deposition was similar in the different cortical areas and in the cerebellum but significantly lower in the hippocampus and absent in the dentate gyrus. There were no significant differences in the extent of the vacuolation and PrP deposition in the upper and lower cortical laminae. Vacuolation and PrP deposition in the upper cortex were both positively correlated with corresponding levels in the lower cortex. In addition, in the parietal cortex and parahippocampal gyrus, the density of the vacuolation was positively correlated with the level of PrP deposition but no such correlations were observed in the remaining areas studied. This quantitative study suggested that: (1) the pathological changes were most severe in the occipital cortex and cerebellum, while the hippocampus was least affected, (2) the pathological changes affect the upper and lower cortical laminae, and (3) the degree of correlation between the density of the vacuolation and PrP deposition may be dependent on brain region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Similar pathological processes may be involved in the deposition of extracellular proteins in the brains of patients with Creutzfeldt-Jakob disease (CJD) and Alzheimer's disease (AD). Hence, this study compared the spatial patterns of prion protein (PrP) deposits in the cerebral cortex and hippocampus in cases of sporadic CJD with those of β-amyloid (Aβ) deposits in sporadic AD. PrP and Aβ deposits were aggregated into clusters and, in 90% of brain areas in CJD and 57% in AD, the clusters were regularly distributed parallel to the tissue boundary. In a significant proportion of cortical analyses, the mean diameter of the clusters of PrP and Aβ deposits were similar to those of the cells of origin of the cortico-cortical pathways. Aβ deposits in AD were distributed more frequently in larger-sized clusters than PrP deposits in CJD. In addition, in the hippocampus and dentate gyrus, clustering of Aβ deposits was observed in AD but PrP deposits were rare in these regions in CJD. The size, location and distribution of the extracellular protein deposits within the cortex of both disorders was consistent with the degeneration of the cortico-cortical pathways. Furthermore, spread of the pathology along these pathways may be a pathogenic feature common to CJD and AD. © 2001 Elsevier Science Ireland Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background & Aims: Current models of visceral pain processing derived from metabolic brain imaging techniques fail to differentiate between exogenous (stimulus-dependent) and endogenous (non-stimulus-specific) neural activity. The aim of this study was to determine the spatiotemporal correlates of exogenous neural activity evoked by painful esophageal stimulation. Methods: In 16 healthy subjects (8 men; mean age, 30.2 ± 2.2 years), we recorded magnetoencephalographic responses to 2 runs of 50 painful esophageal electrical stimuli originating from 8 brain subregions. Subsequently, 11 subjects (6 men; mean age, 31.2 ± 1.8 years) had esophageal cortical evoked potentials recorded on a separate occasion by using similar experimental parameters. Results: Earliest cortical activity (P1) was recorded in parallel in the primary/secondary somatosensory cortex and posterior insula (∼85 ms). Significantly later activity was seen in the anterior insula (∼103 ms) and cingulate cortex (∼106 ms; P = .0001). There was no difference between the P1 latency for magnetoencephalography and cortical evoked potential (P = .16); however, neural activity recorded with cortical evoked potential was longer than with magnetoencephalography (P = .001). No sex differences were seen for psychophysical or neurophysiological measures. Conclusions: This study shows that exogenous cortical neural activity evoked by experimental esophageal pain is processed simultaneously in somatosensory and posterior insula regions. Activity in the anterior insula and cingulate - brain regions that process the affective aspects of esophageal pain - occurs significantly later than in the somatosensory regions, and no sex differences were observed with this experimental paradigm. Cortical evoked potential reflects the summation of cortical activity from these brain regions and has sufficient temporal resolution to separate exogenous and endogenous neural activity. © 2005 by the American Gastroenterological Association.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent functional magnetic resonance imaging (fMRI) investigations of the interaction between cognition and reward processing have found that the lateral prefrontal cortex (PFC) areas are preferentially activated to both increasing cognitive demand and reward level. Conversely, ventromedial PFC (VMPFC) areas show decreased activation to the same conditions, indicating a possible reciprocal relationship between cognitive and emotional processing regions. We report an fMRI study of a rewarded working memory task, in which we further explore how the relationship between reward and cognitive processing is mediated. We not only assess the integrity of reciprocal neural connections between the lateral PFC and VMPFC brain regions in different experimental contexts but also test whether additional cortical and subcortical regions influence this relationship. Psychophysiological interaction analyses were used as a measure of functional connectivity in order to characterize the influence of both cognitive and motivational variables on connectivity between the lateral PFC and the VMPFC. Psychophysiological interactions revealed negative functional connectivity between the lateral PFC and the VMPFC in the context of high memory load, and high memory load in tandem with a highly motivating context, but not in the context of reward alone. Physiophysiological interactions further indicated that the dorsal anterior cingulate and the caudate nucleus modulate this pathway. These findings provide evidence for a dynamic interplay between lateral PFC and VMPFC regions and are consistent with an emotional gating role for the VMPFC during cognitively demanding tasks. Our findings also support neuropsychological theories of mood disorders, which have long emphasized a dysfunctional relationship between emotion/motivational and cognitive processes in depression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deep brain stimulation has shown remarkable potential in alleviating otherwise treatment-resistant chronic pain, but little is currently known about the underlying neural mechanisms. Here for the first time, we used noninvasive neuroimaging by magnetoencephalography to map changes in neural activity induced by deep brain stimulation in a patient with severe phantom limb pain. When the stimulator was turned off, the patient reported significant increases in subjective pain. Corresponding significant changes in neural activity were found in a network including the mid-anterior orbitofrontal and subgenual cingulate cortices; these areas are known to be involved in pain relief. Hence, they could potentially serve as future surgical targets to relieve chronic pain. © 2007 Lippincott Williams & Wilkins, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We used magnetoencephalography (MEG) to map the spatiotemporal evolution of cortical activity for visual word recognition. We show that for five-letter words, activity in the left hemisphere (LH) fusiform gyrus expands systematically in both the posterior-anterior and medial-lateral directions over the course of the first 500 ms after stimulus presentation. Contrary to what would be expected from cognitive models and hemodynamic studies, the component of this activity that spatially coincides with the visual word form area (VWFA) is not active until around 200 ms post-stimulus, and critically, this activity is preceded by and co-active with activity in parts of the inferior frontal gyrus (IFG, BA44/6). The spread of activity in the VWFA for words does not appear in isolation but is co-active in parallel with spread of activity in anterior middle temporal gyrus (aMTG, BA 21 and 38), posterior middle temporal gyrus (pMTG, BA37/39), and IFG. © 2004 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spatial pattern of the vacuolation ('spongiform change') was studied in the upper and lower laminae of the cerebral cortex, the CA1/CA2 sectors of the hippocampus and the molecular layer of the cerebellum in 11 cases of sporadic Creutzfeldt-Jakob disease (CJD). Individual vacuoles were grouped into clusters, 50 to >1600 μm in diameter and, in the majority of tissue sections, the vacuole clusters were distributed with regular periodicity parallel to the tissue boundary. The size of the vacuole clusters was positively correlated with patient age in the lower laminae of the occipital cortex and the inferior temporal gyrus (ITG) and negatively correlated with age in the hippocampus. In addition, the size of the vacuole clusters was positively correlated with disease duration in the upper laminae of the ITG. The size and distribution of the vacuole clusters suggests that the vacuolation in CJD reflects the degeneration of specific brain pathways and supports the hypothesis that prion pathology may spread through the brain along well defined anatomical pathways. (C) 2000 Elsevier Science Ireland Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The densities of Pick bodies (PB), Pick cells (PC), senile plaques (SP) and neurofibrillary tangles (NFT) in the frontal and temporal lobe were determined in ten patients diagnosed with Pick's disease (PD). The density of PB was significantly higher in the dentate gyrus granule cells compared with the cortex and the CA sectors of the hippocampus. Within the hippocampus, the highest densities of PB were observed in sector CA1. PC were absent in the dentate gyrus and no significant differences in PC density were observed in the remaining brain regions. With the exception of two patients, the densities of SP and NFT were low with no significant differences in mean densities between cortical regions. In the hippocampus, the density of NFT was greatest in sector CA1. PB and PC densities were positively correlated in the frontal cortex but no correlations were observed between the PD and AD lesions. A principal components analysis (PCA) of the neuropathological variables suggested that variations in the densities of SP in the frontal cortex, temporal cortex and hippocampus were the most important sources of heterogeneity within the patient group. Variations in the densities of PB and NFT in the temporal cortex and hippocampus were of secondary importance. In addition, the PCA suggested that two of the ten patients were atypical. One patient had a higher than average density of SP and one familial patient had a higher density of NFT but few SP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spatial distribution of the diffuse, primitive, and classic amyloid-beta deposits was studied in the upper laminae of the superior frontal gyrus in cases of sporadic Alzheimer disease (AD). Amyloid-beta-stained tissue was counterstained with collagen IV to determine whether the spatial distribution of the amyloid-beta deposits along the cortex was related to blood vessels. In all patients, amyloid-beta deposits and blood vessels were aggregated into distinct clusters and in many patients, the clusters were distributed with a regular periodicity along the cortex. The clusters of diffuse and primitive deposits did not coincide with the clusters of blood vessels in most patients. However, the clusters of classic amyloid-beta deposits coincided with those of the large diameter (>10 microm) blood vessels in all patients and with clusters of small-diameter (< 10 microm) blood vessels in four patients. The data suggest that, of the amyloid-beta subtypes, the clusters of classic amyloid-beta deposits appear to be the most closely related to blood vessels and especially to the larger-diameter, vertically penetrating arterioles in the upper cortical laminae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clustering of Pick bodies (PB) was studied in the frontal and temporal lobe in 10 cases of Pick's disease (PD). Pick bodies exhibited clustering in 47/50 (94%) brain areas analysed. In 20/50 (40%) brain areas, PB were present in a single large cluster ≤ 6400 μm in diameter, in 27/50 (54%) PB occurred in smaller clusters (200-3200 μm in diameter) which exhibited a regular periodicity relative to the tissue boundary, in 1/50 (2%) there was a regular distribution of individual PB and in 2/50 (4%), PB were randomly distributed. Mean cluster size of the PB was greater in the dentate gyrus compared with the inferior temporal gyrus and lateral occipitotemporal gyrus. Mean cluster size of PB in a brain region was positively correlated with the mean density of PB. Hence, PB exhibit essentially the same spatial patterns as senile plaques and neurofibrillary tangles in Alzheimer's disease (AD) and Lewy bodies in Dementia with Lewy bodies (DLB).