117 resultados para brain disease
Resumo:
The frequency distribution of aggregate size of the diffuse and florid-type prion protein (PrP) plaques was studied in various brain regions in cases of variant Creutzfeldt-Jakob disease (vCJD). The size distributions were unimodal and positively skewed and resembled those of β-amyloid (Aβ) deposits in Alzheimer's disease (AD) and Down's syndrome (DS). The frequency distributions of the PrP aggregates were log-normal in shape, but there were deviations from the expected number of plaques in specific size classes. More diffuse plaques were observed in the modal size class and fewer in the larger size classes than expected and more florid plaques were present in the larger size classes compared with the log-normal model. It was concluded that the growth of the PrP aggregates in vCJD does not strictly follow a log-normal model, diffuse plaques growing to within a more restricted size range and florid plaques to larger sizes than predicted. © Springer-Verlag 2005.
Resumo:
Neuronal intermediate filament (IF) inclusion disease (NIFID) is characterized by neuronal loss, neuronal cytoplasmic IF-positive inclusions (NI), swollen neurons (SN), and a glial cell reaction. We studied the spatial correlations between the clusters of NI, SN, and glial cells in four gyri of the temporal lobe (superior temporal gyrus, inferior temporal gyrus, lateral occipitotemporal gyrus, and parahippocampal gyrus) in four cases of NIFID. The densities of histological features (per 50x250 μ sample field) were as follows: NI (mean = 0.41, range 0.28-0.68), SN (mean = 1.41, range 0.47-2.65), glial cell nuclei (mean = 5.21, range 3.63-8.17). The NI and the SN were positively correlated in half of the brain regions examined, the correlations being present at the smallest field size (50x250 μm). The NI were also positively or negatively correlated with the glial cell nuclei in different areas, the negative correlations being present at the smallest field size. Glial cell nuclei were positively or negatively correlated with the SN in different brain areas, mainly at the larger field sizes (400x250 and 800x250 μm). The spatial correlation between the clusters of NI and SN in the cortex suggests their development within the same columns of cells. At first, the glial cell reaction is also confined to these columns but later becomes more generally distributed across the cortex. © Springer-Verlag 2004.
Resumo:
Objective: To determine whether in cases of variant Creutzfeldt-Jakob disease (vCJD), the florid-type plaques are derived from the diffuse plaques or whether the 2 plaque types develop independently. Material: Blocks of frontal, parietal, occipital and temporal neocortex and cerebellar cortex from 11 cases of vCJD. Method: The density, distribution and spatial pattern of the florid and diffuse plaques were determined in each brain region using spatial pattern analysis. Results: The density of the diffuse plaques was significantly greater than that of the florid plaques in most areas. The ratio of the diffuse to florid plaques varied between brain regions and was maximal in the molecular layer of the cerebellum. The densities of the florid and diffuse plaques were positively correlated in the parietal cortex, occipital cortex, the inferior temporal gyrus and the dentate gyrus. Plaque densities were not related to disease duration. In the cerebral cortex, the diffuse plaques were more commonly evenly distributed or occurred in large clusters along the cortex parallel to the pia mater compared with the florid plaques which occurred more frequently in regularly distributed clusters. Conclusion: The florid plaques may not be derived from the diffuse plaques, the 2 plaque types appearing to develop independently with unique factors involved in their pathogenesis.
Resumo:
This study tested the hypothesis that variations in the density of the florid prion protein (PrP) plaques in the brain of patients with variant Creutzfeldt-Jakob disease (vCJD) were spatially related to blood vessels. In 81% of areas of the cerebral cortex sampled and in 37% of the remaining areas, which included the hippocampus, dentate gyrus, and cerebellum, there was a positive spatial correlation between the density of the florid plaques and the larger blood vessel profiles. The frequency of the positive spatial correlations was similar in different anatomical areas of the cerebral cortex and in the upper compared with the lower cortical laminae. The data support the hypothesis that the florid plaques cluster around the larger blood vessels in vCJD, the density of associated plaques increasing with vessel size. The development of florid plaques close to blood vessels may be due to factors associated with the blood vessels that enhance the aggregation of PrP to form the dense cores of florid plaques and is unlikely to reflect the haematogenous spread of PrP into the brain.
Resumo:
The spatial patterns of the prion protein (PrP) deposits were studied in immunostained sections of areas of the cerebral cortex, hippocampus, dentate gyrus, and the molecular layer of the cerebellum in 11 cases of variant Creutzfeldt-Jakob disease (vCJD). Clustering of PrP deposits, with a regular distribution of the clusters parallel to the tissue boundary, was the most common spatial pattern observed. Two morphological types of PrP deposit were recognised, those consisting of a condensed core (florid deposits) and those deposits lacking a condensed core (non-florid deposits). The florid and non-florid PrP deposits exhibited a different profile of spatial patterns. First, the florid deposits exhibited a regularly distributed pattern of clusters more frequently than the non-florid deposits. Second, the florid deposits formed larger clusters (greater than1,600 µm in diameter) less frequently than the non-florid deposits. In the areas of the cerebral cortex that exhibited a regular distribution of PrP deposit clusters, the cluster size of the deposits approximated that of the groups of cells of the cortico-cortical pathway origin in only 12% of analyses. No significant differences in the frequency of the different types of spatial pattern were observed in different brain regions, or in the cerebral cortex between the upper and lower laminae. It was concluded that the spatial patterns of the PrP deposits in the cerebral cortex in vCJD are unlikely to reflect the degeneration of the cortico-cortical pathways as has been reported in sporadic CJD (sCJD). In addition, different factors could be involved in the development of the deposits with and without a condensed core.
Resumo:
Vacuolation ('spongiform change') and prion protein (PrP) deposition were quantified in the cerebral cortex, hippocampus, dentate gyrus and molecular layer of the cerebellum in 11 cases of variant Creutzfeldt-Jakob disease (vCJD). The density of vacuoles was greater in the cerebral cortex compared to the hippocampus, dentate gyrus and cerebellum. Within the cortex, vacuole density was significantly greater in the occipital compared to the temporal lobe and the density of surviving neurones was greatest in the occipital lobe. The density of the non-florid PrP plaques was greater in the cerebellum compared to the other brain areas. There were significantly more florid-type PrP plaques in the cerebral cortex compared to the hippocampus and the molecular layer of the cerebellum. No significant correlations were observed between the densities of the vacuoles and the PrP plaques. The densities of vacuoles in the parietal cortex and the non-florid plaques in the frontal cortex were positively correlated with the density of surviving neurones. The densities of the florid and the non-florid plaques were positively correlated in the parietal cortex, occipital cortex, inferior temporal gyrus and dentate gyrus. The data suggest: (i) vacuolation throughout the cerebral cortex, especially in the occipital lobe, but less evident in the hippocampus and molecular layer of the cerebellum; (ii) the non-florid plaques are more common than the florid plaques and predominate in the molecular layer of the cerebellum; and (iii) either the florid plaques develop from the non-florid plaques or both types are morphological variants resulting from the same degenerative process.
Resumo:
The vacuolation (spongiform change) and prion protein (PrP) deposition were quantified in the cerebral cortex, hippocampus and cerebellum of 11 patients with sporadic Creutzfeldt-Jakob disease (CJD). The density of the vacuolation, averaged over patients, was greatest in the occipital cortex and cerebellum and least in the dentate gyrus. The degree of PrP deposition was similar in the different cortical areas and in the cerebellum but significantly lower in the hippocampus and absent in the dentate gyrus. There were no significant differences in the extent of the vacuolation and PrP deposition in the upper and lower cortical laminae. Vacuolation and PrP deposition in the upper cortex were both positively correlated with corresponding levels in the lower cortex. In addition, in the parietal cortex and parahippocampal gyrus, the density of the vacuolation was positively correlated with the level of PrP deposition but no such correlations were observed in the remaining areas studied. This quantitative study suggested that: (1) the pathological changes were most severe in the occipital cortex and cerebellum, while the hippocampus was least affected, (2) the pathological changes affect the upper and lower cortical laminae, and (3) the degree of correlation between the density of the vacuolation and PrP deposition may be dependent on brain region.
Resumo:
Correlations between the clustering patterns of the vacuolation ('spongiform change'), prion protein (PrP) deposits, and surviving neurons were studied in the cerebral cortex, hippocampus, and cerebellum in 11 cases of sporadic Creutzfeldt-Jakob disease (sCJD). Differences in the sizes of the clusters of vacuoles were observed between brain regions and in the cerebral cortex, between the upper and lower laminae. With the exception of the parietal cortex, mean cluster size of the vacuoles was similar to that of the PrP deposits in each brain area. Clusters of the vacuoles were spatially correlated with the density of surviving neurons and with the clusters of PrP deposits in 47% and 53% of cortical areas analysed respectively but there were few spatial correlation between the PrP deposits and the density of surviving neurons. The data suggest that the pathology of sCJD may spread through the brain via specific anatomical pathways. Development of the clusters of vacuoles is spatially related to surviving neurons while the appearance of clusters of PrP deposits is related to the development of the vacuolation.
Resumo:
The spatial pattern of the prion protein (PrP) deposits was studied in the cerebral cortex and cerebellum in 10 patients with sporadic Creutzfeldt–Jakob disease (CJD). In all patients the PrP deposits were aggregated into clusters and, in 90% of cortical areas and in 50% of cerebellar sections, the clusters exhibited a regular periodicity parallel to the tissue boundary; a spatial pattern also exhibited by ß-amyloid (Aß) deposits in Alzheimer's disease (AD). In the cerebral cortex, the incidence of regular clustering of the PrP deposits was similar in the upper and lower cortical laminae. The sizes of the PrP clusters in the upper and lower cortex were uncorrelated. No significant differences in mean cluster size of the PrP deposits were observed between brain regions. The size, location and distribution of the PrP deposit clusters suggest that PrP deposition occurs in relation to specific anatomical pathways and supports the hypothesis that prion pathology spreads through the brain via such pathways. In addition, the data suggest that there are similarities in the pathogenesis of extracellular protein deposits in prion disease and in AD.
Resumo:
Similar pathological processes may be involved in the deposition of extracellular proteins in the brains of patients with Creutzfeldt-Jakob disease (CJD) and Alzheimer's disease (AD). Hence, this study compared the spatial patterns of prion protein (PrP) deposits in the cerebral cortex and hippocampus in cases of sporadic CJD with those of β-amyloid (Aβ) deposits in sporadic AD. PrP and Aβ deposits were aggregated into clusters and, in 90% of brain areas in CJD and 57% in AD, the clusters were regularly distributed parallel to the tissue boundary. In a significant proportion of cortical analyses, the mean diameter of the clusters of PrP and Aβ deposits were similar to those of the cells of origin of the cortico-cortical pathways. Aβ deposits in AD were distributed more frequently in larger-sized clusters than PrP deposits in CJD. In addition, in the hippocampus and dentate gyrus, clustering of Aβ deposits was observed in AD but PrP deposits were rare in these regions in CJD. The size, location and distribution of the extracellular protein deposits within the cortex of both disorders was consistent with the degeneration of the cortico-cortical pathways. Furthermore, spread of the pathology along these pathways may be a pathogenic feature common to CJD and AD. © 2001 Elsevier Science Ireland Ltd.
Resumo:
The laminar distributions of the pathological changes in the cerebral cortex were compared in the prion diseases sporadic Creutzfeldt-Jakob disease (sCJD) and variant CJD (vCJD). First, in some cortical regions the vacuolation (‘spongiform change’) was more generally distributed across the cortex in sCJD. Second, there was greater neuronal loss in the upper cortex in vCJD and in the lower cortex in sCJD. Third, the ‘diffuse’ and ‘florid’ prion protein (PrPsc) deposits were more frequently distributed in the upper cortex in vCJD and the ‘synaptic’ deposits in the lower cortex in sCJD. Fourth, there was a significant gliosis mainly affecting the lower cortex of both disorders. The data suggest that the pattern of cortical degeneration is different in sCJD and vCJD which may reflect differences in aetiology and the subsequent spread of prion pathology in the brain.
Resumo:
In accordance with its central role in basal ganglia circuitry, changes in the rate of action potential firing and pattern of activity in the globus pallidus (GP)-subthalamic nucleus (STN) network are apparent in movement disorders. In this study we have developed a mouse brain slice preparation that maintains the functional connectivity between the GP and STN in order to assess its role in shaping and modulating bursting activity promoted by pharmacological manipulations. Fibre-tract tracing studies indicated that a parasagittal slice cut 20 deg to the midline best preserved connectivity between the GP and the STN. IPSCs and EPSCs elicited by electrical stimulation confirmed connectivity from GP to STN in 44/59 slices and from STN to GP in 22/33 slices, respectively. In control slices, 74/76 (97%) of STN cells fired tonically at a rate of 10.3 ± 1.3 Hz. This rate and pattern of single spiking activity was unaffected by bath application of the GABAA antagonist picrotoxin (50 μM, n = 9) or the glutamate receptor antagonist (6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX) 10 μM, n = 8). Bursting activity in STN neurones could be induced pharmacologically by application of NMDA alone (20 μM, 3/18 cells, 17%) but was more robust if NMDA was applied in conjunction with apamin (20-100 nM, 34/77 cells, 44%). Once again, neither picrotoxin (50 μM, n = 5) nor CNQX (10 μM, n = 5) had any effect on the frequency or pattern of the STN neurone activity while paired STN and GP recordings of tonic and bursting activity show no evidence of coherent activity. Thus, in a mouse brain slice preparation where functional GP-STN connectivity is preserved, no regenerative synaptically mediated activity indicative of a dynamic network is evident, either in the resting state or when neuronal bursting in both the GP and STN is generated by application of NMDA/apamin. This difference from the brain in Parkinson's disease may be attributed either to insufficient preservation of cortico-striato-pallidal or cortico-subthalamic circuitry, and/or an essential requirement for adaptive changes resulting from dopamine depletion for the expression of network activity within this tissue complex. © The Physiological Society 2005.
Resumo:
In Alzheimer's disease (AD) brain, beta-amyloid (Abeta) deposits and neurofibrillary tangles (NFT) are not randomly distributed but exhibit a spatial pattern, i.e., a departure from randomness towards regularity or clustering. Studies of the spatial pattern of a lesion may contribute to an understanding of its pathogenesis and therefore, of AD itself. This article describes the statistical methods most commonly used to detect the spatial patterns of brain lesions and the types of spatial patterns exhibited by ß-amyloid deposits and NFT in the cerebral cortex in AD. These studies suggest that within the cerebral cortex, Abeta deposits and NFT exhibit a similar spatial pattern, i.e., an aggregation of individual lesions into clusters which are regularly distributed parallel to the pia mater. The location, size and distribution of these clusters supports the hypothesis that AD is a 'disconnection syndrome' in which degeneration of specific cortical pathways results in the formation of clusters of NFT and Abeta deposits. In addition, a model to explain the development of the pathology within the cerebral cortex is proposed.
Resumo:
The objective of this article was to determine whether the pathological changes of Creutzfeldt-Jacob disease (CJD) were related to the brain microcirculation. Hence, the spatial correlations between the vacuolation, prion protein (PrP) deposits, and the blood vessel profiles were studied in immunolabelled sections of the cerebral cortex, hippocampus, and cerebellum in two subtypes of CJD, viz., sporadic CJD (sCJD) and variant CJD (vCJD). In sCJD, both the vacuolation and the ‘synaptic-type’ PrP deposits were spatially correlated with the microvessels; the PrP deposits being more strongly correlated than the vacuoles. In vCJD, there were no significant spatial correlations between either the vacuolation or the diffuse-type of PrP deposit and the microvessels. By contrast, a consistent pattern of spatial correlation was observed in gyri of the cerebral cortex between the florid PrP deposits and microvessels. In both sCJD and vCJD, the frequency of positive spatial correlations was similar in the different gyri of the cerebral cortex and in the upper compared with the lower laminae. In conclusion, the microcirculation may be more significantly involved in determining the pathological changes in sCJD than in vCJD. The spatial correlations of the florid PrP deposits in vCJD and the synaptic deposits in sCJD and the blood vessels may be attributable to factors associated with the microcirculation which enhance the aggregation of PrP molecules rather than representing a possible haematogenous spread of the disease. S
Resumo:
Quantitative variations in the density and distribution of the vacuolation ('spongiform change'), surviving neurons, and prion protein (PrP) deposits were studied in eight brain regions from 11 cases of variant Creutzfeldt-Jakob disease (vCJD). Principal components analysis (PCA) was used to study the similarities and differences between cases and to identify the neuropathological variables which could best account for these variations. Two principal components (PC) were extracted from the data accounting in total for 93.4% of the variance; the majority of the variance (90%) being associated with PC1. Some clustering of the 11 cases in relation to PC1 and PC2 was evident. The densities of the vacuolation in the occipital cortex and the molecular layer of the cerebellum were positively and negatively correlated, respectively, with PC1. No significant variation between cases was associated with PrP deposition. These data suggest that vCJD cases have a consistent neuropathological profile characterised by the presence of vacuolation, neuronal loss and PrP deposition in the form of florid and non-florid deposits. However, there are quantitative variations between cases in the development of the vacuolation especially affecting the occipital cortex and cerebellum. © 2002 Elsevier Science Ireland Ltd. All rights reserved.