57 resultados para applicazione web, semantic web, semantic publishing, angularJS, user experience, usabilità
Resumo:
The semantic web vision is one in which rich, ontology-based semantic markup will become widely available. The availability of semantic markup on the web opens the way to novel, sophisticated forms of question answering. AquaLog is a portable question-answering system which takes queries expressed in natural language and an ontology as input, and returns answers drawn from one or more knowledge bases (KBs). We say that AquaLog is portable because the configuration time required to customize the system for a particular ontology is negligible. AquaLog presents an elegant solution in which different strategies are combined together in a novel way. It makes use of the GATE NLP platform, string metric algorithms, WordNet and a novel ontology-based relation similarity service to make sense of user queries with respect to the target KB. Moreover it also includes a learning component, which ensures that the performance of the system improves over the time, in response to the particular community jargon used by end users.
Resumo:
The goal of semantic search is to improve on traditional search methods by exploiting the semantic metadata. In this paper, we argue that supporting iterative and exploratory search modes is important to the usability of all search systems. We also identify the types of semantic queries the users need to make, the issues concerning the search environment and the problems that are intrinsic to semantic search in particular. We then review the four modes of user interaction in existing semantic search systems, namely keyword-based, form-based, view-based and natural language-based systems. Future development should focus on multimodal search systems, which exploit the advantages of more than one mode of interaction, and on developing the search systems that can search heterogeneous semantic metadata on the open semantic Web.
Resumo:
Lexicon-based approaches to Twitter sentiment analysis are gaining much popularity due to their simplicity, domain independence, and relatively good performance. These approaches rely on sentiment lexicons, where a collection of words are marked with fixed sentiment polarities. However, words' sentiment orientation (positive, neural, negative) and/or sentiment strengths could change depending on context and targeted entities. In this paper we present SentiCircle; a novel lexicon-based approach that takes into account the contextual and conceptual semantics of words when calculating their sentiment orientation and strength in Twitter. We evaluate our approach on three Twitter datasets using three different sentiment lexicons. Results show that our approach significantly outperforms two lexicon baselines. Results are competitive but inconclusive when comparing to state-of-art SentiStrength, and vary from one dataset to another. SentiCircle outperforms SentiStrength in accuracy on average, but falls marginally behind in F-measure. © 2014 Springer International Publishing.
Resumo:
AKT is a major research project applying a variety of technologies to knowledge management. Knowledge is a dynamic, ubiquitous resource, which is to be found equally in an expert's head, under terabytes of data, or explicitly stated in manuals. AKT will extend knowledge management technologies to exploit the potential of the semantic web, covering the use of knowledge over its entire lifecycle, from acquisition to maintenance and deletion. In this paper we discuss how HLT will be used in AKT and how the use of HLT will affect different areas of KM, such as knowledge acquisition, retrieval and publishing.
Resumo:
Using the resistance literature as an underpinning theoretical framework, this chapter analyzes how Web designers through their daily practices, (i) adopt recursive, adaptive, and resisting behavior regarding the inclusion of social cues online and (ii) shape the socio-technical power relationship between designers and other stakeholders. Five vignettes in the form of case studies with expert individual Web designers are used. Findings point out at three types of emerging resistance namely: market driven resistance, ideological resistance, and functional resistance. In addition, a series of propositions are provided linking the various themes. Furthermore, the authors suggest that stratification in Web designers’ type is occurring and that resistance offers a novel lens to analyze the debate.
Resumo:
The success of the Semantic Web, as the next generation of Web technology, can have profound impact on the environment for formal software development. It allows both the software engineers and machines to understand the content of formal models and supports more effective software design in terms of understanding, sharing and reusing in a distributed manner. To realise the full potential of the Semantic Web in formal software development, effectively creating proper semantic metadata for formal software models and their related software artefacts is crucial. In this paper, a methodology with tool support is proposed to automatically derive ontological metadata from formal software models and semantically describe them.
Resumo:
The number of interoperable research infrastructures has increased significantly with the growing awareness of the efforts made by the Global Earth Observation System of Systems (GEOSS). One of the Societal Benefit Areas (SBA) that is benefiting most from GEOSS is biodiversity, given the costs of monitoring the environment and managing complex information, from space observations to species records including their genetic characteristics. But GEOSS goes beyond simple data sharing to encourage the publishing and combination of models, an approach which can ease the handling of complex multi-disciplinary questions. It is the purpose of this paper to illustrate these concepts by presenting eHabitat, a basic Web Processing Service (WPS) for computing the likelihood of finding ecosystems with equal properties to those specified by a user. When chained with other services providing data on climate change, eHabitat can be used for ecological forecasting and becomes a useful tool for decision-makers assessing different strategies when selecting new areas to protect. eHabitat can use virtually any kind of thematic data that can be considered as useful when defining ecosystems and their future persistence under different climatic or development scenarios. The paper will present the architecture and illustrate the concepts through case studies which forecast the impact of climate change on protected areas or on the ecological niche of an African bird.
Resumo:
Web APIs have gained increasing popularity in recent Web service technology development owing to its simplicity of technology stack and the proliferation of mashups. However, efficiently discovering Web APIs and the relevant documentations on the Web is still a challenging task even with the best resources available on the Web. In this paper we cast the problem of detecting the Web API documentations as a text classification problem of classifying a given Web page as Web API associated or not. We propose a supervised generative topic model called feature latent Dirichlet allocation (feaLDA) which offers a generic probabilistic framework for automatic detection of Web APIs. feaLDA not only captures the correspondence between data and the associated class labels, but also provides a mechanism for incorporating side information such as labelled features automatically learned from data that can effectively help improving classification performance. Extensive experiments on our Web APIs documentation dataset shows that the feaLDA model outperforms three strong supervised baselines including naive Bayes, support vector machines, and the maximum entropy model, by over 3% in classification accuracy. In addition, feaLDA also gives superior performance when compared against other existing supervised topic models.
Resumo:
Sentiment analysis over Twitter offer organisations a fast and effective way to monitor the publics' feelings towards their brand, business, directors, etc. A wide range of features and methods for training sentiment classifiers for Twitter datasets have been researched in recent years with varying results. In this paper, we introduce a novel approach of adding semantics as additional features into the training set for sentiment analysis. For each extracted entity (e.g. iPhone) from tweets, we add its semantic concept (e.g. Apple product) as an additional feature, and measure the correlation of the representative concept with negative/positive sentiment. We apply this approach to predict sentiment for three different Twitter datasets. Our results show an average increase of F harmonic accuracy score for identifying both negative and positive sentiment of around 6.5% and 4.8% over the baselines of unigrams and part-of-speech features respectively. We also compare against an approach based on sentiment-bearing topic analysis, and find that semantic features produce better Recall and F score when classifying negative sentiment, and better Precision with lower Recall and F score in positive sentiment classification.
Resumo:
The World Wide Web provides plentiful contents for Web-based learning, but its hyperlink-based architecture connects Web resources for browsing freely rather than for effective learning. To support effective learning, an e-learning system should be able to discover and make use of the semantic communities and the emerging semantic relations in a dynamic complex network of learning resources. Previous graph-based community discovery approaches are limited in ability to discover semantic communities. This paper first suggests the Semantic Link Network (SLN), a loosely coupled semantic data model that can semantically link resources and derive out implicit semantic links according to a set of relational reasoning rules. By studying the intrinsic relationship between semantic communities and the semantic space of SLN, approaches to discovering reasoning-constraint, rule-constraint, and classification-constraint semantic communities are proposed. Further, the approaches, principles, and strategies for discovering emerging semantics in dynamic SLNs are studied. The basic laws of the semantic link network motion are revealed for the first time. An e-learning environment incorporating the proposed approaches, principles, and strategies to support effective discovery and learning is suggested.
Resumo:
Evaluations of semantic search systems are generally small scale and ad hoc due to the lack of appropriate resources such as test collections, agreed performance criteria and independent judgements of performance. By analysing our work in building and evaluating semantic tools over the last five years, we conclude that the growth of the semantic web led to an improvement in the available resources and the consequent robustness of performance assessments. We propose two directions for continuing evaluation work: the development of extensible evaluation benchmarks and the use of logging parameters for evaluating individual components of search systems.
Resumo:
Schema heterogeneity issues often represent an obstacle for discovering coreference links between individuals in semantic data repositories. In this paper we present an approach, which performs ontology schema matching in order to improve instance coreference resolution performance. A novel feature of the approach is its use of existing instance-level coreference links defined in third-party repositories as background knowledge for schema matching techniques. In our tests of this approach we obtained encouraging results, in particular, a substantial increase in recall in comparison with existing sets of coreference links.
Resumo:
Because poor quality semantic metadata can destroy the effectiveness of semantic web technology by hampering applications from producing accurate results, it is important to have frameworks that support their evaluation. However, there is no such framework developedto date. In this context, we proposed i) an evaluation reference model, SemRef, which sketches some fundamental principles for evaluating semantic metadata, and ii) an evaluation framework, SemEval, which provides a set of instruments to support the detection of quality problems and the collection of quality metrics for these problems. A preliminary case study of SemEval shows encouraging results.
Resumo:
Because metadata that underlies semantic web applications is gathered from distributed and heterogeneous data sources, it is important to ensure its quality (i.e., reduce duplicates, spelling errors, ambiguities). However, current infrastructures that acquire and integrate semantic data have only marginally addressed the issue of metadata quality. In this paper we present our metadata acquisition infrastructure, ASDI, which pays special attention to ensuring that high quality metadata is derived. Central to the architecture of ASDI is a verification engine that relies on several semantic web tools to check the quality of the derived data. We tested our prototype in the context of building a semantic web portal for our lab, KMi. An experimental evaluation comparing the automatically extracted data against manual annotations indicates that the verification engine enhances the quality of the extracted semantic metadata.
Resumo:
While much of a company's knowledge can be found in text repositories, current content management systems have limited capabilities for structuring and interpreting documents. In the emerging Semantic Web, search, interpretation and aggregation can be addressed by ontology-based semantic mark-up. In this paper, we examine semantic annotation, identify a number of requirements, and review the current generation of semantic annotation systems. This analysis shows that, while there is still some way to go before semantic annotation tools will be able to address fully all the knowledge management needs, research in the area is active and making good progress.