172 resultados para Web-Application Google-Drive Fatture Drive SDK Invoice OAuth 2.2 JavaScript
Resumo:
In fibrotic conditions increases in TG2 activity has been linked to an increase in the deposition of extracellular matrix proteins. Using TG2 transfected Swiss 3T3 fibroblasts expressing TG2 under the control of the tetracycline-regulated inducible promoter, we demonstrate that induction of TG2 not only stimulates an increase in collagen and fibronectin deposition but also an increase in the expression of these proteins. Increased TG2 expression in these fibroblasts led to NF-kappaB activation, resulting in the increased expression of transforming growth factor (TGF) beta(1). In addition, cells overexpressing TG2 demonstrated an increase in biologically active TGFbeta(1) in the extracellular environment. A specific site-directed inhibitor of TG abolished the NF-kappaB and TGFbeta1 activation and the subsequent elevation in the synthesis and deposition of extracellular matrix proteins, confirming that this process depends on the induction of transglutaminase activity. Treatment of TG2-induced fibroblasts with nontoxic doses of nitric oxide donor S-nitroso-N-acetylpenicillamine resulted in decreased TG2 activity and apprehension of the inactive enzyme on the cell surface. This was paralleled by a reduction in activation of NF-kappaB and TGFbeta(1) production with a subsequent decrease in collagen expression and deposition. These findings support a role for NO in the regulation of TG2 function in the extracellular environment.
Resumo:
Simulations examining pattern competition have been performed on a horizontal homogeneously heated layer that is bounded by an isothermal plane above an adiabatic plane. Several different circulation patterns arose as the heating regime applied to the horizontal layer was modified. The sequence of the patterns formed as the Grashof number was increased had the following order: laminar, z-axis rolls, squares, hexagons and pentagons, pentagons and then two different square modes of differing orientations. Fourier analysis was used to determine how the key modes interact in the presence of different patterns.
Resumo:
Methods for understanding classical disordered spin systems with interactions conforming to some idealized graphical structure are well developed. The equilibrium properties of the Sherrington-Kirkpatrick model, which has a densely connected structure, have become well understood. Many features generalize to sparse Erdös- Rényi graph structures above the percolation threshold and to Bethe lattices when appropriate boundary conditions apply. In this paper, we consider spin states subject to a combination of sparse strong interactions with weak dense interactions, which we term a composite model. The equilibrium properties are examined through the replica method, with exact analysis of the high-temperature paramagnetic, spin-glass, and ferromagnetic phases by perturbative schemes. We present results of replica symmetric variational approximations, where perturbative approaches fail at lower temperature. Results demonstrate re-entrant behaviors from spin glass to ferromagnetic phases as temperature is lowered, including transitions from replica symmetry broken to replica symmetric phases. The nature of high-temperature transitions is found to be sensitive to the connectivity profile in the sparse subgraph, with regular connectivity a discontinuous transition from the paramagnetic to ferromagnetic phases is apparent.
Resumo:
Inference and optimization of real-value edge variables in sparse graphs are studied using the Bethe approximation and replica method of statistical physics. Equilibrium states of general energy functions involving a large set of real edge variables that interact at the network nodes are obtained in various cases. When applied to the representative problem of network resource allocation, efficient distributed algorithms are also devised. Scaling properties with respect to the network connectivity and the resource availability are found, and links to probabilistic Bayesian approximation methods are established. Different cost measures are considered and algorithmic solutions in the various cases are devised and examined numerically. Simulation results are in full agreement with the theory. © 2007 The American Physical Society.
Resumo:
We present a mean field theory of code-division multiple access (CDMA) systems with error-control coding. On the basis of the relation between the free energy and mutual information, we obtain an analytical expression of the maximum spectral efficiency of the coded CDMA system, from which a mean field description of the coded CDMA system is provided in terms of a bank of scalar Gaussian channels whose variances in general vary at different code symbol positions. Regular low-density parity-check (LDPC)-coded CDMA systems are also discussed as an example of the coded CDMA systems.
Resumo:
Computing circuits composed of noisy logical gates and their ability to represent arbitrary Boolean functions with a given level of error are investigated within a statistical mechanics setting. Existing bounds on their performance are straightforwardly retrieved, generalized, and identified as the corresponding typical-case phase transitions. Results on error rates, function depth, and sensitivity, and their dependence on the gate-type and noise model used are also obtained.
Resumo:
We devise a message passing algorithm for probabilistic inference in composite systems, consisting of a large number of variables, that exhibit weak random interactions among all variables and strong interactions with a small subset of randomly chosen variables; the relative strength of the two interactions is controlled by a free parameter. We examine the performance of the algorithm numerically on a number of systems of this type for varying mixing parameter values.
Resumo:
We consider the detection of biased information sources in the ubiquitous code-division multiple-access (CDMA) scheme. We propose a simple modification to both the popular single-user matched-filter detector and a recently introduced near-optimal message-passing-based multiuser detector. This modification allows for detecting modulated biased sources directly with no need for source coding. Analytical results and simulations with excellent agreement are provided, demonstrating substantial improvement in bit error rate in comparison with the unmodified detectors and the alternative of source compression. The robustness of error-performance improvement is shown under practical model settings, including bias estimation mismatch and finite-length spreading codes. © 2007 IOP Publishing Ltd.
Resumo:
Whole life costing (WLC) has become the best practice in construction procurement and it is likely to be a major issue in predicting whole life costs of a construction project accurately. However, different expectations from different organizations throughout a project's life and the lack of data, monitoring targets, and long-term interest for many key players are obstacles to be overcome if WLC is to be implemented. A questionnaire survey was undertaken to investigate a set of ten common factors and 188 individual factors. These were grouped into eight critical categories (project scope, time, cost, quality, contract/administration, human resource, risk, and health and safety) by project phase, as perceived by the clients, contractors and subcontractors in order to identify critical success factors for whole life performance assessment (WLPA). Using a relative importance index, the top ten critical factors for each category, from the perspective of project participants, were analyzed and ranked. Their agreement on those categories and factors were analyzed using Spearman's rank correlation. All participants identify “Type of Project” as the most common critical factor in the eight categories for WLPA. Using the relative index ranking technique and weighted average methods, it was found that the most critical individual factors in each category were: “clarity of contract” (scope); “fixed construction period” (time); “precise project budget estimate” (cost); “material quality” (quality); “mutual/trusting relationships” (contract/administration); “leadership/team management” (human resource); and “management of work safety on site” (health and safety). There was relatively a high agreement on these categories among all participants. Obviously, with 80 critical factors of WLPA, there is a stronger positive relationship between client and contactor rather than contractor and subcontractor, client and subcontractor. Putting these critical factors into a criteria matrix can facilitate an initial framework of WLPA in order to aid decision making in the public sector in South Korea for evaluation/selection process of a construction project at the bid stage.
Resumo:
A study was made of the effect of blending practice upon selected physical properties of crude oils, and of various base oils and petroleum products, using a range of binary mixtures. The crudes comprised light, medium and heavy Kuwait crude oils. The properties included kinematic viscosity, pour point, boiling point and Reid vapour pressure. The literature related to the prediction of these properties, and the changes reported to occur on blending, was critically reviewed as a preliminary to the study. The kinematic viscosity of petroleum oils in general exhibited non-ideal behaviour upon blending. A mechanism was proposed for this behaviour which took into account the effect of asphaltenes content. A correlation was developed, as a modification of Grunberg's equation, to predict the viscosities of binary mixtures of petroleum oils. A correlation was also developed to predict the viscosities of ternary mixtures. This correlation showed better agreement with experimental data (< 6% deviation for crude oils and 2.0% for base oils) than currently-used methods, i.e. ASTM and Refutas methods. An investigation was made of the effect of temperature on the viscosities of crude oils and petroleum products at atmospheric pressure. The effect of pressure on the viscosity of crude oil was also studied. A correlation was developed to predict the viscosity at high pressures (up to 8000 psi), which gave significantly better agreement with the experimental data than the current method due to Kouzel (5.2% and 6.0% deviation for the binary and ternary mixtures respectively). Eyring's theory of viscous flow was critically investigated, and a modification was proposed which extends its application to petroleum oils. The effect of blending on the pour points of selected petroleum oils was studied together with the effect of wax formation and asphaltenes content. Depression of the pour point was always obtained with crude oil binary mixtures. A mechanism was proposed to explain the pour point behaviour of the different binary mixtures. The effects of blending on the boiling point ranges and Reid vapour pressures of binary mixtures of petroleum oils were investigated. The boiling point range exhibited ideal behaviour but the R.V.P. showed negative deviations from it in all cases. Molecular weights of these mixtures were ideal, but the densities and molar volumes were not. The stability of the various crude oil binary mixtures, in terms of viscosity, was studied over a temperature range of 1oC - 30oC for up to 12 weeks. Good stability was found in most cases.
Resumo:
This paper provides a critical overview into a distinctive typology of Learning and Teaching Research developed at a relatively small, research-led UK University. Based upon research into staff perceptions of the relationship between learning and teaching research and practice, the model represents an holistic approach to evidence-based learning and teaching practice in Contemporary Higher Education.
Resumo:
A wide range of molecules acting as apoptotic cell-associated ligands, phagocyte-associated receptors or soluble bridging molecules have been implicated within the complex sequential processes that result in phagocytosis and degradation of apoptotic cells. Intercellular adhesion molecule 3 (ICAM-3, also known as CD50), a human leukocyte-restricted immunoglobulin super-family (IgSF) member, has previously been implicated in apoptotic cell clearance, although its precise role in the clearance process is ill defined. The main objective of this work is to further characterise the function of ICAM-3 in the removal of apoptotic cells. Using a range of novel anti-ICAM-3 monoclonal antibodies (mAbs), including one (MA4) that blocks apoptotic cell clearance by macrophages, alongside apoptotic human leukocytes that are normal or deficient for ICAM-3, we demonstrate that ICAM-3 promotes a domain 1-2-dependent tethering interaction with phagocytes. Furthermore, we demonstrate an apoptosis-associated reduction in ICAM-3 that results from release of ICAM-3 within microparticles that potently attract macrophages to apoptotic cells. Taken together, these data suggest that apoptotic cell-derived microparticles bearing ICAM-3 promote macrophage chemoattraction to sites of leukocyte cell death and that ICAM-3 mediates subsequent cell corpse tethering to macrophages. The defined function of ICAM-3 in these processes and profound defect in chemotaxis noted to ICAM-3-deficient microparticles suggest that ICAM-3 may be an important adhesion molecule involved in chemotaxis to apoptotic human leukocytes. © 2012 Macmillan Publishers Limited All rights reserved.
Resumo:
Industrial development has had a major role in creating the situation where bio-diverse materials and services essential for sustaining business are under threat. A key contributory factor to biodiversity decline comes from the cumulative impacts of extended supply chain business operations. In order to contribute to stopping this decline, the industrial world needs to form a better understanding of the way it utilizes the business and biodiversity agenda in its wider operations. This thesis investigates the perceptions and attitudes to biodiversity from government, society and a wide cross-section of industry. The research includes the extent of corporate attention to and use of environmental business tools and guidelines in reporting on biodiversity issues. A case study of three companies from different industrial sectors is undertaken to observe procurement and related environmental management of their supply chains. The use of accredited and non-accredited environmental management systems (EMS) are analysed as frameworks for introducing biodiversity aspects into supply chain management. The outcome is a methodology, which can be used either as a bespoke in-house biodiversity management system or within an accredited ISO 14001 EMS, for incorporating the assessment and management of the potential risks and opportunities involving environmental impacts on biodiversity of supply chain companies.
Resumo:
In construction projects, the aim of project control is to ensure projects finish on time, within budget, and achieve other project objectives. During the last few decades, numerous project control methods have been developed and adopted by project managers in practice. However, many existing methods focus on describing what the processes and tasks of project control are; not on how these tasks should be conducted. There is also a potential gap between principles that underly these methods and project control practice. As a result, time and cost overruns are still common in construction projects, partly attributable to deficiencies of existing project control methods and difficulties in implementing them. This paper describes a new project cost and time control model, the project control and inhibiting factors management (PCIM) model, developed through a study involving extensive interaction with construction practitioners in the UK, which better reflects the real needs of project managers. A set of good practice checklist is also developed to facilitate implementation of the model. © 2013 American Society of Civil Engineers.
Resumo:
The literature relating to evaporation from single droplets of pure liquids and the drying of solution and slurry droplets, and of droplet sprays has been reviewed. The heat and mass transfer rates for individual droplets suspended in free-flight, were investigated using a specially-designed vertical wind tunnel, to simulate conditions in a spray drier. The technique represented a unique alternative method for investigating evaporation from unrestrained single droplets with variable residence times. The experiments covered droplets of pure liquid allowbreak (water, isopropanol) allowbreak and of significantly different solutions (sucrose, potassium sulphate) over a range of temperatures of 37oC to 97oC, initial concentrations of 5 to 40wt/wt% , and initial drop sizes of 2.8 to 4.6mm. Drop behaviour was recorded photographically and dried particles were examined by Scanning Electron Microscopy. Correlations were developed for mass transfer coefficients for pure water droplets in free-flight; (i) experiencing oscillations, rotation and deformation, Sh = -105 + 3.9 [Ta - Td/Tamb]0.18Re0.5Sc033 for Re approx. > 1380 (ii) when these movements had ceased or diminished, Sh = 2.0 + 0.71 [Ta - Td/Tamb]0.18Re0.5Sc033 for Re approx. < 1060. Data for isopropanol drops were correlated resonably well by these equations. The heat transfer data showed a similar transition range. The drying rate curves for drops of sucrose and potassium sulphate solution exhibited three distinct stages; an initial increase in the drying rate as drop temperature reduced to the wet-bulb temperature, a short constant-rate period and a falling-rate period characterised by formation of a crust which controlled the mass transfer rate. Due to drop perturbation the rates in the high Re number region were up to 5 times greater than predicted from theory for spherical droplets. In the case of sucrose solution a `skin' formed over the drop surface prior to crust formation. This provided an additional resistance to mass transfer and resulted in extended drying times and a smooth crust of low porosity. The relevance of the results to practical spray drying operations is discussed.