76 resultados para Visual Function
Resumo:
Vitamin and mineral deficiencies are common in developing countries, but also occur in developed countries. We review micronutrient deficiencies for the major vitamins A, cobalamin (B-12), biotin (vitamin H), vitamins C and E, as well as the minerals iron, and zinc, in the developed world, in terms of their relationship to systemic health and any resulting ocular disease and/or visual dysfunction. A knowledge of these effects is important as individuals with consequent poor ocular health and reduced visual function may present for ophthalmic care.
Resumo:
Background: Carotenoids are not considered to be essential nutrients, but their antioxidant and photoprotective properties have prompted interest in their potential role in disease prevention. Our aim is to review the evidence In relation to ocular disease. Method: Web of Science and Medline via PubMed database search. Results Lutein and zeaxanthin intake has been associated with a 22% reduced risk of cataract extraction in women (RR 0.78, p = 0.04), and a 19% lower risk of cataract in men (RR 0.8, p = 0, 03). A randomised controlled trial (RCT) found a significant improvement in visual acuity in cataract patients supplemented with lutein. Two RCTs investigating the effect of P-carotene, in combination with other nutrients, on cataract report conflicting results. Several studies show no inverse association between cataract and P-carotene. Lutein and zeaxanthin are the only carotenoids found in the human macula. RCTs have found beneficial effects of both lutein and beta-carotene supplementation, in combination with other antioxidants, on visual function age-related macular disease affected subjects. Evidence for a role of lutein in preventing deterioration of visual function in retinitis pigmentosa patients is conflicting. CONCLUSIONS: Further research into the role of lutein and zeaxanthin in prevention of onset and progression of ocular disease is warranted.
Resumo:
The role of nutritional supplementation in prevention of onset or progression of ocular disease is of interest to health care professionals and patients. The aim of this review is to identify those antioxidants most appropriate for inclusion in an ideal ocular nutritional supplement, suitable for those with a family history of glaucoma, cataract, or age-related macular disease, or lifestyle factors predisposing onset of these conditions, such as smoking, poor nutritional status, or high levels of sunlight exposure. It would also be suitable for those with early stages of age-related ocular disease. Literature searches were carried out on Web of Science and PubMed for articles relating to the use of nutrients in ocular disease. Those highlighted for possible inclusion were vitamins A, B, C and E, carotenoids beta-carotene, lutein, and zeaxanthin, minerals selenium and zinc, and the herb, Ginkgo biloba. Conflicting evidence is presented for vitamins A and E in prevention of ocular disease; these vitamins have roles in the production of rhodopsin and prevention of lipid peroxidation respectively. B vitamins have been linked with a reduced risk of cataract and studies have provided evidence supporting a protective role of vitamin C in cataract prevention. Beta-carotene is active in the prevention of free radical formation, but has been linked with an increased risk of lung cancer in smokers. Improvements in visual function in patients with age-related macular disease have been noted with lutein and zeaxanthin supplementation. Selenium has been linked with a reduced risk of cataract and activates the antioxidant enzyme glutathione peroxidase, protecting cell membranes from oxidative damage while zinc, although an essential component of antioxidant enzymes, has been highlighted for risk of adverse effects. As well as reducing platelet aggregation and increasing vasodilation, Gingko biloba has been linked with improvements in pre-existing field damage in some patients with normal tension glaucoma. We advocate that vitamins C and E, and lutein/zeaxanthin should be included in our theoretically ideal ocular nutritional supplement.
Resumo:
Dementia, including Alzheimer’s disease (AD), is a major disorder causing visual problems in the elderly population. The pathology of AD includes the deposition in the brain of abnormal aggregates of ß-amyloid (Aß) in the form of senile plaques (SP) and abnormally phosphorylated tau in the form of neurofibrillary tangles (NFT). A variety of visual problems have been reported in patients with AD including loss of visual acuity (VA), colour vision and visual fields; changes in pupillary response to mydriatics, defects in fixation and in smooth and saccadic eye movements; changes in contrast sensitivity and in visual evoked potentials (VEP); and disturbances of complex visual functions such as reading, visuospatial function, and in the naming and identification of objects. Many of these changes are controversial with conflicting data in the literature and no ocular or visual feature can be regarded as particularly diagnostic of AD. In addition, some pathological changes have been observed to affect the eye, visual pathway, and visual cortex in AD. The optometrist has a role in helping a patient with AD, if it is believed that signs and symptoms of the disease are present, so as to optimize visual function and improve the quality of life. (J Optom 2009;2:103-111 ©2009 Spanish Council of Optometry)
Resumo:
Ocular dimensions are widely recognised as key variants of refractive error. Previously, accurate depiction of eye shape in vivo was largely restricted by limitations in the imaging techniques available. This thesis describes unique applications of the recently introduced 3-dimensional magnetic resonance imaging (MRI) approach to evaluate human eye shape in a group of young adult subjects (n=76) with a range of ametropia (MSE= -19.76 to +4.38D). Specific MRI derived parameters of ocular shape are then correlated with measures of visual function. Key findings include the significant homogeneity of ocular volume in the anterior eye for a range of refractive errors, whilst significant volume changes occur in the posterior eye as a function of ametropia. Anterior vs. posterior eye differences have also been shown through evaluations of equivalent spherical radius; the posterior 25% cap of the eye was shown to be relatively steeper in myopes compared to emmetropes. Further analyses showed differences in retinal quadrant profiles; assessments of the maximum distance from the retinal surface to the presumed visual axes showed exaggerated growth of the temporal quadrant in myopic eyes. Comparisons of retinal contour values derived from transformation of peripheral refraction data were made with MRI; flatter retinal curvature values were noted when using the MRI technique. A distinctive feature of this work is the evaluation of the relationship between ocular structure and visual function. Multiple aspects of visual function were evaluated through several vehicles: multifocal electroretinogram testing, visual field sensitivity testing, and the use of psychophysical methods to determine ganglion cell density. The results show that many quadrantic structural and functional variations exist. In general, the data could not demonstrate a significant correlation between visual function and associated measures of ocular conformation either within or between myopic and emmetropic groups.
Resumo:
There were four principal sections to the work: 1. Investigation of ocular and systemic vascular risk factors in POAG. The principal findings of this work were: a). Glaucoma patients exhibit an anticipatory reaction to the physical stress, similar to subjects at risk for cardiovascular diseases; a blunted BP response and a reduction in ONH blood flow in response to cold provocation was also recorded. b). Silent myocardial ischaemic episodes occurred during peaks in systemic BP and HR. c). Independent of a positive history for cardiovascular diseases, patients suffering from POAG demonstrate a blunt circadian rhythm of the ANS. 2. Assessment of the relationship between vascular and systemic vascular risk factors in GON. The principal findings of this work were: a). POAG patients demonstrate a high sympathetic tonus over a 24-h period. b). POAG patients with lower OBF demonstrate both 24-h systemic BP and HRV abnormalities. c). OBF alterations observed in some glaucoma patients could be either primary or secondary to systemic haemodynamic disturbances and not a consequence of ONH damage. 3. Assessment of the level of systemic anti-oxidant defence in POAG patients. The principal finding of this work was: Patients suffering from POAG demonstrated significantly lower GSH and t-GSH levels than normal controls. 4. Investigation of the effect of treatment with latanoprost 0.005% on visual function and OBF. The findings of this work were: a). Treatment with latanoprost 0.005% resulted in a significant decrease in IOP and increase in OPP. VF damage progression has also been stopped. b). Treatment with latanoprost 0.005% resulted in a significant increase in the OBF parameters measured at the ONH and peripapillary retina levels. Finally, the importance of a clear protocol for managing new POAG cases is highlighted and a clinical conduit is proposed.
Resumo:
There were three principle aims to this thesis. Firstly, the acquisition protocols of clinical blood flow apparatus were investigated in order to optimise them for both cross-sectional and longitudinal application. Secondly, the effects of physiological factors including age and systematic circulation on ocular blood flow were investigated. Finally, the ocular perfusion characteristics of patients diagnosed with ocular diseases considered to be of a vascular origin were investigated. The principle findings of this work are:- 1) Optimisation of clinical investigationsPhotodiode sensitivity of the scanning laser Doppler flowmeter should be kept within a range of 70-150 DC when acquiring images of the retina and optic nerve head in order to optimise the reproducibility of capillary blood flow measures. Account of the physiological spatial variation in retinal blood flow measures can be made using standard analysis protocols of the scanning laser Doppler flowmeter combined with a local search strategy. Measurements of pulsatile ocular blood flow using the ocular blood flow analyser are reproducible, however this reproducibility can be improved when consecutive intraocular pressure pulses are used to calculate pulsatile ocular blood flow. Spectral analysis of the intraocular pressure pulse-wave is viable and identifies the first four harmonic components of the waveform. 2) Physiological variation in ocular perfusionAge results in a significant reduction in perfusion of the retinal microcirculation, which is not evident in larger vessel beds such as the choroid. Despite known asymmetry in the systemic vasculature, no evidence of interocular asymmetry in ocular perfusion is apparent. 3) Pathological variation in ocular perfusionIn primary open angle glaucoma, perfusion is reduced in the retinal microcirculation of patients classified as having early to moderate visual field defects. However, ocular pulsatility defects are masked when patients and subjects are matched for systemic variables (pulse rate and mean arterial pressure); differentiation is facilitated by the application of waveform analysis to the continuos intraocular pressure curve even in the early stages of disease. Diabetic patients with adequate glycaemic control, exhibit maintenance of macular blood flow, macular topography and visual function following phacoemulsification.
Resumo:
The aim of this thesis was to develop standards of best practice for the subjective assessment of near visual function in presbyopia. Near visual acuity (VA) is a quick and simple measure but an assessment of the maximum reading speed and the smallest print size that can maintain this are equally important, to gain a better reflection of real world visual function. These metrics are dependent on the amplitude of accommodation (AoA) and often this must be evaluated using subjective techniques. Defocus curves are less susceptible than the push-up/push-down test to the influence of blur tolerance but their implementation must be standardised such that letter sequences and the order of lens presentation are randomised, to avoid memory effects, whilst the AoA should be quantified as the range of defocus for which only the best VA is maintained. In addition to such clinical assessments, subjective questionnaire evaluations are also important, to determine whether at least an individual’s needs are met. The Near Activity Visual Questionnaire (NAVQ) developed in this thesis can be used for this. Using these standardised near vision metrics it is shown that visual performance with monovision and multifocal contact lenses is comparable whilst initial outcomes of single optic ‘accommodating’ intraocular lens implantation are unlikely to be sustained in the long-term.
Resumo:
Background: The aim was to investigate the visual effect of coloured filters compared to transmission-matched neutral density filters, in patients with dry age-related macular degeneration. Methods: Visual acuity (VA, logMAR), contrast sensitivity (Pelli-Robson) and colour vision (D15) were recorded for 39 patients (average age 79.1 ± 7.2 years) with age-related macular degeneration, both in the presence and absence of glare from a fluorescent source. Patients then chose their preferred coloured and matched neutral density transmission filters (NoIR). Visual function tests were repeated with the chosen filters, both in the presence and absence of glare from the fluorescent source. Patients trialled the two filters for two weeks each, in random order. Following the trial of each filter, a telephone questionnaire was completed. Results: VA and contrast sensitivity were unaffected by the coloured filters but reduced through the neutral density filters (p < 0.01). VA and contrast sensitivity were reduced by similar amounts, following the introduction of the glare source, both in the presence and absence of filters (p < 0.001). Colour vision error scores were increased following the introduction of a neutral density filter (from 177.6 ± 60.2 to 251.9 ± 115.2) and still further through coloured filters (275.1 ± 50.8; p < 0.001). In the absence of any filter, colour vision error scores increased by 29.1 ± 55.60 units in the presence of glare (F2,107 = 3.9, p = 0.02); however, there was little change in colour vision error scores, in the presence of glare, with either the neutral density or coloured filters. Questionnaires indicated that patients tended to gain more benefit from the coloured filters. Conclusions: Coloured filters had minimal impact on VA and contrast sensitivity in patients with age-related macular degeneration; however, they caused a small reduction in objective colour vision, although this was not registered subjectively by patients. Patients indicated that they received more benefit from the coloured filters compared with neutral density filters. © 2013 The Authors © 2013 Optometrists Association Australia.
Resumo:
Aim: Contrast sensitivity (CS) provides important information on visual function. This study aimed to assess differences in clinical expediency of the CS increment-matched new back-lit and original paper versions of the Melbourne Edge Test (MET) to determine the CS of the visually impaired. Methods: The back-lit and paper MET were administered to 75 visually impaired subjects (28-97 years). Two versions of the back-lit MET acetates were used to match the CS increments with the paper-based MET. Measures of CS were repeated after 30 min and again in the presence of a focal light source directed onto the MET. Visual acuity was measured with a Bailey-Lovie chart and subjects rated how much difficulty they had with face and vehicle recognition. Results: The back-lit MET gave a significantly higher CS than the paper-based version (14.2 ± 4.1 dB vs 11.3 ± 4.3 dB, p < 0.001). A significantly higher reading resulted with repetition of the paper-based MET (by 1.0 ± 1.7 dB, p < 0.001), but this was not evident with the back-lit MET (by 0.1 ± 1.4 dB, p = 0.53). The MET readings were increased by a focal light source, in both the back-lit (by 0.3 ± 0.81, p < 0.01) and paper-based (1.2 ± 1.7, p < 0.001) versions. CS as measured by the back-lit and paper-based versions of the MET was significantly correlated to patients' perceived ability to recognise faces (r = 0.71, r = 0.85 respectively; p < 0.001) and vehicles (r = 0.67, r = 0.82 respectively; p < 0.001), and with distance visual acuity (both r =-0.64; p < 0.001). Conclusions: The CS increment-matched back-lit MET gives higher CS values than the old paper-based test by approximately 3 dB and is more repeatable and less affected by external light sources. Clinically, the MET score provides information on patient difficulties with visual tasks, such as recognising faces. © 2005 The College of Optometrists.
Resumo:
For more than a century it has been known that the eye is not a perfect optical system, but rather a system that suffers from aberrations beyond conventional prescriptive descriptions of defocus and astigmatism. Whereas traditional refraction attempts to describe the error of the eye with only two parameters, namely sphere and cylinder, measurements of wavefront aberrations depict the optical error with many more parameters. What remains questionable is the impact these additional parameters have on visual function. Some authors have argued that higher-order aberrations have a considerable effect on visual function and in certain cases this effect is significant enough to induce amblyopia. This has been referred to as ‘higher-order aberration-associated amblyopia’. In such cases, correction of higher-order aberrations would not restore visual function. Others have reported that patients with binocular asymmetric aberrations display an associated unilateral decrease in visual acuity and, if the decline in acuity results from the aberrations alone, such subjects may have been erroneously diagnosed as amblyopes. In these cases, correction of higher-order aberrations would restore visual function. This refractive entity has been termed ‘aberropia’. In order to investigate these hypotheses, the distribution of higher-order aberrations in strabismic, anisometropic and idiopathic amblyopes, and in a group of visual normals, was analysed both before and after wavefront-guided laser refractive correction. The results show: (i) there is no significant asymmetry in higher-order aberrations between amblyopic and fixing eyes prior to laser refractive treatment; (ii) the mean magnitude of higher-order aberrations is similar within the amblyopic and visually normal populations; (iii) a significant improvement in visual acuity can be realised for adult amblyopic patients utilising wavefront-guided laser refractive surgery and a modest increase in contrast sensitivity was observed for the amblyopic eye of anisometropes following treatment (iv) an overall trend towards increased higher-order aberrations following wavefront-guided laser refractive treatment was observed for both visually normal and amblyopic eyes. In conclusion, while the data do not provide any direct evidence for the concepts of either ‘aberropia’ or ‘higher-order aberration-associated amblyopia’, it is clear that gains in visual acuity and contrast sensitivity may be realised following laser refractive treatment of the amblyopic adult eye. Possible mechanisms by which these gains are realised are discussed.
Resumo:
BACKGROUND: Contrast detection is an important aspect of the assessment of visual function; however, clinical tests evaluate limited spatial frequencies and contrasts. This study validates the accuracy and inter-test repeatability of a swept-frequency near and distance mobile app Aston contrast sensitivity test, which overcomes this limitation compared to traditional charts. METHOD: Twenty subjects wearing their full refractive correction underwent contrast sensitivity testing on the new near application (near app), distance app, CSV-1000 and Pelli-Robson charts with full correction and with vision degraded by 0.8 and 0.2 Bangerter degradation foils. In addition repeated measures using the 0.8 occluding foil were taken. RESULTS: The mobile apps (near more than distance, p = 0.005) recorded a higher contrast sensitivity than printed tests (p < 0.001); however, all charts showed a reduction in measured contrast sensitivity with degradation (p < 0.001) and a similar decrease with increasing spatial frequency (interaction > 0.05). Although the coefficient of repeatability was lowest for the Pelli-Robson charts (0.14 log units), the mobile app charts measured more spatial frequencies, took less time and were more repeatable (near: 0.26 to 0.37 log units; distance: 0.34 to 0.39 log units) than the CSV-1000 (0.30 to 0.93 log units). The duration to complete the CSV-1000 was 124 ± 37 seconds, Pelli-Robson 78 ± 27 seconds, near app 53 ± 15 seconds and distance app 107 ± 36 seconds. CONCLUSIONS: While there were differences between charts in contrast levels measured, the new Aston near and distance apps are valid, repeatable and time-efficient method of assessing contrast sensitivity at multiple spatial frequencies.
Resumo:
The treatment of presbyopia has been the focus of much scientific and clinical research over recent years, not least due to an increasingly aging population but also the desire for spectacle independence. Many lens and nonlens-based approaches have been investigated, and with advances in biomaterials and improved surgical methods, removable corneal inlays have been developed. One such development is the KAMRA™ inlay where a small entrance pupil is exploited to create a pinhole-type effect that increases the depth of focus and enables improvement in near visual acuity. Short- and long-term clinical studies have all reported significant improvement in near and intermediate vision compared to preoperative measures following monocular implantation (nondominant eye), with a large proportion of patients achieving Jaeger (J) 2 to J1 (~0.00 logMAR to ~0.10 logMAR) at the final follow-up. Although distance acuity is reduced slightly in the treated eye, binocular visual acuity and function remain very good (mean 0.10 logMAR or better). The safety of the inlay is well established and easily removable, and although some patients have developed corneal changes, these are clinically insignificant and the incidence appears to reduce markedly with advancements in KAMRA design, implantation technique, and femtosecond laser technology. This review aims to summarize the currently published peer-reviewed studies on the safety and efficacy of the KAMRA inlay and discusses the surgical and clinical outcomes with respect to the patient’s visual function.
Resumo:
Various neuroimaging investigations have revealed that perception of emotional pictures is associated with greater visual cortex activity than their neutral counterparts. It has further been proposed that threat-related information is rapidly processed, suggesting that the modulation of visual cortex activity should occur at an early stage. Additional studies have demonstrated that oscillatory activity in the gamma band range (40-100 Hz) is associated with threat processing. Magnetoencephalography (MEG) was used to investigate such activity during perception of task-irrelevant, threat-related versus neutral facial expressions. Our results demonstrated a bilateral reduction in gamma band activity for expressions of threat, specifically anger, compared with neutral faces in extrastriate visual cortex (BA 18) within 50-250 ms of stimulus onset. These results suggest that gamma activity in visual cortex may play a role in affective modulation of visual processing, in particular with the perception of threat cues.
Resumo:
The study utilized the advanced technology provided by automated perimeters to investigate the hypothesis that patients with retinitis pigmentosa behave atypically over the dynamic range and to concurrently determine the influence of extraneous factors on the format of the normal perimetric sensitivity profile. The perimetric processing of some patients with retinitis pigmentosa was considered to be abnormal in either the temporal and/or the spatial domain. The standard size III stimulus saturated the central regions and was thus ineffective in detecting early depressions in sensitivity in these areas. When stimulus size was scaled in inverse proportion to the square root of ganglion cell receptive field density (M-scaled), isosensitive profiles did not result, although cortical representation was theoretically equivalent across the visual field. It was conjectured that this was due to variations in the ganglion cell characteristics with increasing peripheral angle, most notably spatial summation. It was concluded that the development of perimetric routines incorporating stimulus sizes adjusted in proportion to the coverage factor of retinal ganglion cells would enhance the diagnostic capacity of perimetry. Good general and local correspondence was found between perimetric sensitivity and the available retinal cell counts. Intraocular light scatter arising both from simulations and media opacities depressed perimetric sensitivity. Attenuation was greater centrally for the smaller LED stimuli, whereas the reverse was true for the larger projected stimuli. Prior perimetric experience and pupil size also demonstrated eccentricity-dependent effect on sensitivity. Practice improved perimetric sensitivity for projected stimuli at eccentricities greater than or equal to 30o; particularly in the superior region. Increase in pupil size for LED stimuli enhanced sensitivity at eccentricities greater than 10o. Conversely, microfluctuation in the accommodative response during perimetric examination and the correction of peripheral refractive error had no significant influence on perimetric sensitivity.