32 resultados para Training analysis
Resumo:
Queuing is a key efficiency criterion in any service industry, including Healthcare. Almost all queue management studies are dedicated to improving an existing Appointment System. In developing countries such as Pakistan, there are no Appointment Systems for outpatients, resulting in excessive wait times. Additionally, excessive overloading, limited resources and cumbersome procedures lead to over-whelming queues. Despite numerous Healthcare applications, Data Envelopment Analysis (DEA) has not been applied for queue assessment. The current study aims to extend DEA modelling and demonstrate its usefulness by evaluating the queue system of a busy public hospital in a developing country, Pakistan, where all outpatients are walk-in; along with construction of a dynamic framework dedicated towards the implementation of the model. The inadequate allocation of doctors/personnel was observed as the most critical issue for long queues. Hence, the Queuing-DEA model has been developed such that it determines the ‘required’ number of doctors/personnel. The results indicated that given extensive wait times or length of queue, or both, led to high target values for doctors/personnel. Hence, this crucial information allows the administrators to ensure optimal staff utilization and controlling the queue pre-emptively, minimizing wait times. The dynamic framework constructed, specifically targets practical implementation of the Queuing-DEA model in resource-poor public hospitals of developing countries such as Pakistan; to continuously monitor rapidly changing queue situation and display latest required personnel. Consequently, the wait times of subsequent patients can be minimized, along with dynamic staff scheduling in the absence of appointments. This dynamic framework has been designed in Excel, requiring minimal training and work for users and automatic update features, with complex technical aspects running in the background. The proposed model and the dynamic framework has the potential to be applied in similar public hospitals, even in other developing countries, where appointment systems for outpatients are non-existent.
Resumo:
Whole body vibration treatment is a non-pharmacological intervention intended to stimulate muscular response and increase bone mineral density, particularly for postmenopausal women. The literature related to this topic is controversial, heterogeneous, and unclear despite the prospect of a major clinical effect. The aim of this study was to identify and systematically review the literature to assess the effect of whole body vibration treatments on bone mineral density (BMD) in postmenopausal women with a specific focus on the experimental factors that influence the stimulus. Nine studies fulfilled the inclusion criteria, including 527 postmenopausal women and different vibration delivery designs. Cumulative dose, amplitudes and frequency of treatments as well as subject posture during treatment vary widely among studies. Some of the studies included an associated exercise training regime. Both randomized and controlled clinical trials were included. Whole body vibration was shown to produce significant BMD improvements on the hip and spine when compared to no intervention. Conversely, treatment associated with exercise training resulted in negligible outcomes when compared to exercise training or to placebo. Moreover, side-alternating platforms were more effective in improving BMD values than synchronous platforms and mechanical oscillations of magnitude higher than 3 g and/or frequency lower than 25 Hz were also found to be effective. Treatments with a cumulative dose over 1000 minutes in the follow-up period were correlated to positive outcomes. Our conclusion is that whole body vibration treatments in elderly women can reduce BMD decline.However, many factors (e.g. amplitude, frequency and subject posture) affect the capacity of the vibrations to propagate to the target site; the adequate level of stimulation required to produce these effects has not yet been defined. Further biomechanical analyses to predict the propagation of the vibration waves along the body and assess the stimulation levels are required.