34 resultados para Topic segmentation
Resumo:
Topic classification (TC) of short text messages offers an effective and fast way to reveal events happening around the world ranging from those related to Disaster (e.g. Sandy hurricane) to those related to Violence (e.g. Egypt revolution). Previous approaches to TC have mostly focused on exploiting individual knowledge sources (KS) (e.g. DBpedia or Freebase) without considering the graph structures that surround concepts present in KSs when detecting the topics of Tweets. In this paper we introduce a novel approach for harnessing such graph structures from multiple linked KSs, by: (i) building a conceptual representation of the KSs, (ii) leveraging contextual information about concepts by exploiting semantic concept graphs, and (iii) providing a principled way for the combination of KSs. Experiments evaluating our TC classifier in the context of Violence detection (VD) and Emergency Responses (ER) show promising results that significantly outperform various baseline models including an approach using a single KS without linked data and an approach using only Tweets. Copyright 2013 ACM.
Resumo:
There is a tendency to view conversations involving non-native speakers (NNSs) as inevitably fraught with problems, including an inability to handle topic management. This article, in contrast, will focus on effective topic changes made by non-native speakers during informal conversations with native speakers of English. A micro-analysis of ten conversations revealed several ways of shifting conversational topics; however, the article concentrates on those strategies which the participants used to effect a particular type of topic move, namely 'marked topic changes', where there is no connection at all with previous talk. The findings show how these topic changes were jointly negotiated, and that the non-native speakers' contributions to initiating new topics were competently managed.
Resumo:
Segmentation is an important step in many medical imaging applications and a variety of image segmentation techniques exist. One group of segmentation algorithms is based on clustering concepts. In this article we investigate several fuzzy c-means based clustering algorithms and their application to medical image segmentation. In particular we evaluate the conventional hard c-means (HCM) and fuzzy c-means (FCM) approaches as well as three computationally more efficient derivatives of fuzzy c-means: fast FCM with random sampling, fast generalised FCM, and a new anisotropic mean shift based FCM. © 2010 by IJTS, ISDER.
Resumo:
Conventional topic models are ineffective for topic extraction from microblog messages since the lack of structure and context among the posts renders poor message-level word co-occurrence patterns. In this work, we organize microblog posts as conversation trees based on reposting and replying relations, which enrich context information to alleviate data sparseness. Our model generates words according to topic dependencies derived from the conversation structures. In specific, we differentiate messages as leader messages, which initiate key aspects of previously focused topics or shift the focus to different topics, and follower messages that do not introduce any new information but simply echo topics from the messages that they repost or reply. Our model captures the different extents that leader and follower messages may contain the key topical words, thus further enhances the quality of the induced topics. The results of thorough experiments demonstrate the effectiveness of our proposed model.