43 resultados para Theory and Algorithms
Resumo:
In this work, we introduce the periodic nonlinear Fourier transform (PNFT) method as an alternative and efficacious tool for compensation of the nonlinear transmission effects in optical fiber links. In the Part I, we introduce the algorithmic platform of the technique, describing in details the direct and inverse PNFT operations, also known as the inverse scattering transform for periodic (in time variable) nonlinear Schrödinger equation (NLSE). We pay a special attention to explaining the potential advantages of the PNFT-based processing over the previously studied nonlinear Fourier transform (NFT) based methods. Further, we elucidate the issue of the numerical PNFT computation: we compare the performance of four known numerical methods applicable for the calculation of nonlinear spectral data (the direct PNFT), in particular, taking the main spectrum (utilized further in Part II for the modulation and transmission) associated with some simple example waveforms as the quality indicator for each method. We show that the Ablowitz-Ladik discretization approach for the direct PNFT provides the best performance in terms of the accuracy and computational time consumption.
Resumo:
The Indian economy characterized variously as a slumbering giant, powerful tiger, and the most promising market has witnessed a slowdown, occasional disturbances in the industrial relations space, and attention of the world in the last five years. In this special issue, we raise pertinent questions and present research on multiple dimensions of the dynamic and rapidly changing business environment of India. The suitability of management models and frameworks developed in the North American contexts in emerging markets like India and China is questioned. One example of how the well-established models in the literature on success of international joint ventures were insufficient to explain the success of three international joint ventures in the insurance space in India is presented as case in point. Finally, the nine papers that materially contribute to the theme of this special issue are introduced. © 2016 Wiley Periodicals, Inc.
Resumo:
We apply prospect theory to explain how personal and corporate bankruptcy laws affect risk perceptions of entrepreneurs at time of entry and therefore their growth ambitions. Previous theories have reached ambiguous conclusions as to whether countries with more debtor-friendly bankruptcy laws (i.e. laws that are more forgiving towards debtors in bankruptcy proceedings) are likely to have more entrepreneurs, or whether, creditorfriendly regimes have positive effects on new ventures via enhanced incentives for the supply of credit to entrepreneurs. Responding to this ambiguity, we apply prospect theory to propose that entrepreneurs do not attach the same significance to different elements of bankruptcy codes—and to explain which aspects of debtor-friendly bankruptcy laws matter more to entrepreneurs. Based on this, we derive and confirm hypotheses about the impact of aspects of bankruptcy codes on entrepreneurial activity using the Global Entrepreneurship Monitor combined with data on both personal and corporate bankruptcyregulations for 15 developed OECD countries. We use multilevel random coefficient logistic regressions to take account of the hierarchical nature of the data (country and individual levels). Because entrepreneurs and creditors are sensitive to different elements of the codes, there is scope for optimisation of the legal design of bankruptcy law to achieve both an adequate supply of credit and to encourage high-ambition entrepreneurship.
Resumo:
As systems for computer-aided-design and production of mechanical parts have developed, there has arisen a need for techniques for the comprehensive description of the desired part, including its 3-D shape. The creation and manipulation of shapes is generally known as geometric modelling. It is desirable that links be established between geometric modellers and machining programs. Currently, unbounded APT and some bounded geometry systems are being widely used in manufacturing industry for machining operations such as: milling, drilling, boring and turning, applied mainly to engineering parts. APT systems, however, are presently only linked to wire-frame drafting systems. The combination of a geometric modeller and APT will provide a powerful manufacturing system for industry from the initial design right through part manufacture using NC machines. This thesis describes a recently developed interface (ROMAPT) between a bounded geometry modeller (ROMULUS) and an unbounded NC processor (APT). A new set of theoretical functions and practical algorithms for the computer aided manufacturing of 3D solid geometric model has been investigated. This work has led to the development of a sophisticated computer program, ROMAPT, which provides a new link between CAD (in form of a goemetric modeller ROMULUS) and CAM (in form of the APT NC system). ROMAPT has been used to machine some engineering prototypes successfully both in soft foam material and aluminium. It has been demonstrated above that the theory and algorithms developed by the author for the development of computer aided manufacturing of 3D solid modelling are both valid and applicable. ROMAPT allows the full potential of a solid geometric modeller (ROMULUS) to be further exploited for NC applications without requiring major investment in new NC processor. ROMAPT supports output in APT-AC, APT4 and the CAM-I SSRI NC languages.
Resumo:
In “The English Patient: English Grammar and teaching in the Twentieth Century”, Hudson and Walmsley (2005) contens that the decline of grammar in schools was linked to a similar decline in English universities, where no serious research or teaching on English grammar took place. This article argues that such a decline was due not only to a lack of research, but also because it suited educational policies of the time. It applies Bernstein’s theory of pedagogic discourse (1990 & 1996) to the case study of the debate surrounding the introduction of a national curriculum in English in England in the late 1980s and the National Literacy Strategy in the 1990s, to demonstrate the links between academic theory and educational policy.
Resumo:
We derive a mean field algorithm for binary classification with Gaussian processes which is based on the TAP approach originally proposed in Statistical Physics of disordered systems. The theory also yields an approximate leave-one-out estimator for the generalization error which is computed with no extra computational cost. We show that from the TAP approach, it is possible to derive both a simpler 'naive' mean field theory and support vector machines (SVM) as limiting cases. For both mean field algorithms and support vectors machines, simulation results for three small benchmark data sets are presented. They show 1. that one may get state of the art performance by using the leave-one-out estimator for model selection and 2. the built-in leave-one-out estimators are extremely precise when compared to the exact leave-one-out estimate. The latter result is a taken as a strong support for the internal consistency of the mean field approach.
Resumo:
This paper considers the role of opportunism in three contractual theories of the firm: rent-seeking theory, property rights theory, and agency theory. In each case I examine whether it is possible to have a functioning contractual theory of the firm without recourse to opportunism. Without opportunism firms may still exist as a result of issues arising from (incomplete) contracting. Far from posing a problem for the theory of the firm, questioning the role of opportunism and the ubiquity of the hold-up problem helps us understand more about the purpose and functions of contracts which go beyond mere incentive alignment.
Resumo:
The question of what to provide employees in order that they reciprocate with desirable behaviors in the work place has resulted in a great amount of work in the area of social exchange. Although offering fair compensation, including salary or wages and employee benefits, has been extensively studied, the effects of offering specific types of benefits, such as work-life balance benefits, and the intangible rewards that such an offering inadvertently offers, has only been minimally explored. Utilizing past literature, this current research examined the offering of work-life balance benefits, the value employees place on those benefits, the communication of the benefits by the organization to employees, and their effect on employee attitudes and behaviors. The goal was to identify the effect on desirable outcomes when work-life balance benefits are offered to determine the usefulness to the organization of offering such benefits. To test these effects, a study of an organization known to offer a strong work-life balance benefits package was undertaken. This was accomplished through the distribution of questionnaires to identify the possible relationships involving 408 employee respondents and their 79 supervisors. This was followed with interviews of 12 individuals to ascertain the true reasons for links observed through analysis. Analysis of the data was accomplished through correlation analysis, multilevel analysis and regression analysis generated by SPSS. The results of the quantitative analysis showed support for a relationship between the offering of work-life balance benefits and perceived organizational support, perceived distributive justice, job satisfaction and OCBO. The analysis also showed a lack of support for a relationship between the offering of work-life balance benefits and organizational commitment, OCBI and IRB. The interviews offered possible reasons for the lack of support regarding the relationship between the offering of work-life balance benefits and organizational commitment as well as organizational citizenship behaviors (OCBI and IRB). The implications of these findings on future research, theory and practice in the offering of work-life balance benefits are discussed.
Resumo:
This article deals with a number of supply chain management (SCM) issues: SCM’s “Big Idea” – integration, Divergence of Theory and Practice - the limitations of “hard-wiring”, The “Human Chain”, The Way Forward – asking the right question?
Resumo:
We present a review of the latest developments in one-dimensional (1D) optical wave turbulence (OWT). Based on an original experimental setup that allows for the implementation of 1D OWT, we are able to show that an inverse cascade occurs through the spontaneous evolution of the nonlinear field up to the point when modulational instability leads to soliton formation. After solitons are formed, further interaction of the solitons among themselves and with incoherent waves leads to a final condensate state dominated by a single strong soliton. Motivated by the observations, we develop a theoretical description, showing that the inverse cascade develops through six-wave interaction, and that this is the basic mechanism of nonlinear wave coupling for 1D OWT. We describe theory, numerics and experimental observations while trying to incorporate all the different aspects into a consistent context. The experimental system is described by two coupled nonlinear equations, which we explore within two wave limits allowing for the expression of the evolution of the complex amplitude in a single dynamical equation. The long-wave limit corresponds to waves with wave numbers smaller than the electrical coherence length of the liquid crystal, and the opposite limit, when wave numbers are larger. We show that both of these systems are of a dual cascade type, analogous to two-dimensional (2D) turbulence, which can be described by wave turbulence (WT) theory, and conclude that the cascades are induced by a six-wave resonant interaction process. WT theory predicts several stationary solutions (non-equilibrium and thermodynamic) to both the long- and short-wave systems, and we investigate the necessary conditions required for their realization. Interestingly, the long-wave system is close to the integrable 1D nonlinear Schrödinger equation (NLSE) (which contains exact nonlinear soliton solutions), and as a result during the inverse cascade, nonlinearity of the system at low wave numbers becomes strong. Subsequently, due to the focusing nature of the nonlinearity, this leads to modulational instability (MI) of the condensate and the formation of solitons. Finally, with the aid of the probability density function (PDF) description of WT theory, we explain the coexistence and mutual interactions between solitons and the weakly nonlinear random wave background in the form of a wave turbulence life cycle (WTLC).
Resumo:
Concept evaluation at the early phase of product development plays a crucial role in new product development. It determines the direction of the subsequent design activities. However, the evaluation information at this stage mainly comes from experts' judgments, which is subjective and imprecise. How to manage the subjectivity to reduce the evaluation bias is a big challenge in design concept evaluation. This paper proposes a comprehensive evaluation method which combines information entropy theory and rough number. Rough number is first presented to aggregate individual judgments and priorities and to manipulate the vagueness under a group decision-making environment. A rough number based information entropy method is proposed to determine the relative weights of evaluation criteria. The composite performance values based on rough number are then calculated to rank the candidate design concepts. The results from a practical case study on the concept evaluation of an industrial robot design show that the integrated evaluation model can effectively strengthen the objectivity across the decision-making processes.