39 resultados para Task-Based Instruction (TBI)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper seeks to advance research and practice related to the role of employers in all stages of the assessment process of work-based learning (WBL) within a tripartite relationship of higher education institution (HEI), student and employer. It proposes a research-informed quality enhancement framework to develop good practice in engaging employers as partners in assessment. The Enhancement Framework comprises three dimensions, each of which includes elements and questions generated by the experiences of WBL students, HEI staff and employers. The three dimensions of the Enhancement Framework are: 1. ‘premises of assessment’ encompassing issues of learning, inclusion, standards and value; 2. ‘practice’, encompassing stages of assessment made up of course design, assessment task, responsibilities, support, grading and feedback; 3. ‘communication of assessment’ with the emphasis on role clarity, language and pathways. With its prompt questions, the Enhancement Framework may be used as a capacity-building tool for promoting, sustaining, benchmarking and evaluating productive dialogue and critical reflection about assessment between WBL partners. The paper concludes by emphasising the need for professional development as well as policy and research development, so that assessment in WBL can more closely correspond to the potentially transformative nature of the learning experience.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The expansion of the Internet has made the task of searching a crucial one. Internet users, however, have to make a great effort in order to formulate a search query that returns the required results. Many methods have been devised to assist in this task by helping the users modify their query to give better results. In this paper we propose an interactive method for query expansion. It is based on the observation that documents are often found to contain terms with high information content, which can summarise their subject matter. We present experimental results, which demonstrate that our approach significantly shortens the time required in order to accomplish a certain task by performing web searches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Short text messages a.k.a Microposts (e.g. Tweets) have proven to be an effective channel for revealing information about trends and events, ranging from those related to Disaster (e.g. hurricane Sandy) to those related to Violence (e.g. Egyptian revolution). Being informed about such events as they occur could be extremely important to authorities and emergency professionals by allowing such parties to immediately respond. In this work we study the problem of topic classification (TC) of Microposts, which aims to automatically classify short messages based on the subject(s) discussed in them. The accurate TC of Microposts however is a challenging task since the limited number of tokens in a post often implies a lack of sufficient contextual information. In order to provide contextual information to Microposts, we present and evaluate several graph structures surrounding concepts present in linked knowledge sources (KSs). Traditional TC techniques enrich the content of Microposts with features extracted only from the Microposts content. In contrast our approach relies on the generation of different weighted semantic meta-graphs extracted from linked KSs. We introduce a new semantic graph, called category meta-graph. This novel meta-graph provides a more fine grained categorisation of concepts providing a set of novel semantic features. Our findings show that such category meta-graph features effectively improve the performance of a topic classifier of Microposts. Furthermore our goal is also to understand which semantic feature contributes to the performance of a topic classifier. For this reason we propose an approach for automatic estimation of accuracy loss of a topic classifier on new, unseen Microposts. We introduce and evaluate novel topic similarity measures, which capture the similarity between the KS documents and Microposts at a conceptual level, considering the enriched representation of these documents. Extensive evaluation in the context of Emergency Response (ER) and Violence Detection (VD) revealed that our approach outperforms previous approaches using single KS without linked data and Twitter data only up to 31.4% in terms of F1 measure. Our main findings indicate that the new category graph contains useful information for TC and achieves comparable results to previously used semantic graphs. Furthermore our results also indicate that the accuracy of a topic classifier can be accurately predicted using the enhanced text representation, outperforming previous approaches considering content-based similarity measures. © 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the advent of GPS enabled smartphones, an increasing number of users is actively sharing their location through a variety of applications and services. Along with the continuing growth of Location-Based Social Networks (LBSNs), security experts have increasingly warned the public of the dangers of exposing sensitive information such as personal location data. Most importantly, in addition to the geographical coordinates of the user’s location, LBSNs allow easy access to an additional set of characteristics of that location, such as the venue type or popularity. In this paper, we investigate the role of location semantics in the identification of LBSN users. We simulate a scenario in which the attacker’s goal is to reveal the identity of a set of LBSN users by observing their check-in activity. We then propose to answer the following question: what are the types of venues that a malicious user has to monitor to maximize the probability of success? Conversely, when should a user decide whether to make his/her check-in to a location public or not? We perform our study on more than 1 million check-ins distributed over 17 urban regions of the United States. Our analysis shows that different types of venues display different discriminative power in terms of user identity, with most of the venues in the “Residence” category providing the highest re-identification success across the urban regions. Interestingly, we also find that users with a high entropy of their check-ins distribution are not necessarily the hardest to identify, suggesting that it is the collective behaviour of the users’ population that determines the complexity of the identification task, rather than the individual behaviour.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, there has been an increasing interest in learning a distributed representation of word sense. Traditional context clustering based models usually require careful tuning of model parameters, and typically perform worse on infrequent word senses. This paper presents a novel approach which addresses these limitations by first initializing the word sense embeddings through learning sentence-level embeddings from WordNet glosses using a convolutional neural networks. The initialized word sense embeddings are used by a context clustering based model to generate the distributed representations of word senses. Our learned representations outperform the publicly available embeddings on half of the metrics in the word similarity task, 6 out of 13 sub tasks in the analogical reasoning task, and gives the best overall accuracy in the word sense effect classification task, which shows the effectiveness of our proposed distributed distribution learning model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most research in the area of emotion detection in written text focused on detecting explicit expressions of emotions in text. In this paper, we present a rule-based pipeline approach for detecting implicit emotions in written text without emotion-bearing words based on the OCC Model. We have evaluated our approach on three different datasets with five emotion categories. Our results show that the proposed approach outperforms the lexicon matching method consistently across all the three datasets by a large margin of 17–30% in F-measure and gives competitive performance compared to a supervised classifier. In particular, when dealing with formal text which follows grammatical rules strictly, our approach gives an average F-measure of 82.7% on “Happy”, “Angry-Disgust” and “Sad”, even outperforming the supervised baseline by nearly 17% in F-measure. Our preliminary results show the feasibility of the approach for the task of implicit emotion detection in written text.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adaptability for distributed object-oriented enterprise frameworks in multimedia technology is a critical mission for system evolution. Today, building adaptive services is a complex task due to lack of adequate framework support in the distributed computing systems. In this paper, we propose a Metalevel Component-Based Framework which uses distributed computing design patterns as components to develop an adaptable pattern-oriented framework for distributed computing applications. We describe our approach of combining a meta-architecture with a pattern-oriented framework, resulting in an adaptable framework which provides a mechanism to facilitate system evolution. This approach resolves the problem of dynamic adaptation in the framework, which is encountered in most distributed multimedia applications. The proposed architecture of the pattern-oriented framework has the abilities to dynamically adapt new design patterns to address issues in the domain of distributed computing and they can be woven together to shape the framework in future. © 2011 Springer Science+Business Media B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the use of Bluetooth and Java-Based technologies in developing a multi-player mobile game in ubiquitous computing, which strongly depends on automatic contextual reconfiguration and context-triggered actions. Our investigation focuses on an extended form of ubiquitous computing which game software developers utilize to develop games for players. We have developed an experimental ubiquitous computing application that provides context-aware services to game server and game players in a mobile distributed computing system. Obviously, contextual services provide useful information in a context-aware system. However, designing a context-aware game is still a daunting task and much theoretical and practical research remains to be done to reach the ubiquitous computing era. In this paper, we present the overall architecture and discuss, in detail, the implementation steps taken to create a Bluetooth and Java based context-aware game. We develop a multi-player game server and prepare the client and server codes in ubiquitous computing, providing adaptive routines to handle connection information requests, logging and context formatting and delivery for automatic contextual reconfiguration and context-triggered actions. © 2010 Binary Information Press.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on close examinations of instant message (IM) interactions, this chapter argues that an interactional sociolinguistic approach to computer-mediated language use could provide explanations for phenomena that previously could not be accounted for in computer-mediated discourse analysis (CMDA). Drawing on the theoretical framework of relational work (Locher, 2006), the analysis focuses on non-task oriented talk and its function in forming and establishing communication norms in the team, as well as micro-level phenomena, such as hesitation, backchannel signals and emoticons. The conclusions of this preliminary research suggest that the linguistic strategies used for substituting audio-visual signals are strategically used in discursive functions and have an important role in relational work