63 resultados para TURF analysis, Binary programming, product design
Resumo:
This paper reports on an investigation with first year undergraduate Product Design and Management students within a School of Engineering. The students at the time of this investigation had studied fundamental engineering science and mathematics for one semester. The students were given an open ended, ill formed problem which involved designing a simple bridge to cross a river. They were given a talk on problem solving and given a rubric to follow, if they chose to do so. They were not given any formulae or procedures needed in order to resolve the problem. In theory, they possessed the knowledge to ask the right questions in order to make assumptions but, in practice, it turned out they were unable to link their a priori knowledge to resolve this problem. They were able to solve simple beam problems when given closed questions. The results show they were unable to visualise a simple bridge as an augmented beam problem and ask pertinent questions and hence formulate appropriate assumptions in order to offer resolutions.
Resumo:
Renewable energy forms have been widely used in the past decades highlighting a "green" shift in energy production. An actual reason behind this turn to renewable energy production is EU directives which set the Union's targets for energy production from renewable sources, greenhouse gas emissions and increase in energy efficiency. All member countries are obligated to apply harmonized legislation and practices and restructure their energy production networks in order to meet EU targets. Towards the fulfillment of 20-20-20 EU targets, in Greece a specific strategy which promotes the construction of large scale Renewable Energy Source plants is promoted. In this paper, we present an optimal design of the Greek renewable energy production network applying a 0-1 Weighted Goal Programming model, considering social, environmental and economic criteria. In the absence of a panel of experts Data Envelopment Analysis (DEA) approach is used in order to filter the best out of the possible network structures, seeking for the maximum technical efficiency. Super-Efficiency DEA model is also used in order to reduce the solutions and find the best out of all the possible. The results showed that in order to achieve maximum efficiency, the social and environmental criteria must be weighted more than the economic ones.
Resumo:
Using a hydraulic equipment manufacturing plant as the case study, this work explores the problems of systems integration in manufacturing systems design, stressing the behavioural aspects of motivation and participation, and the constraints involved in the proper consideration of the human sub-system. The need for a simple manageable modular organisation structure is illustrated, where it is shown, by reference to systems theory, how a business can be split into semi-autonomous operating units. The theme is the development of a manufacturing system based on an analysis of the business, its market, product, technology and constraints, coupled with a critical survey of modern management literature to develop an integrated systems design to suit a specific company in the current social environment. Society currently moves through a socio-technical revolution with man seeking higher levels of motivation. The transitory environment from an autocratic/paternalistic to a participative operating mode demands systems parameters only found to a limited extent in manufacturing systems today. It is claimed, that modern manufacturing systems design needs to be based on group working, job enrichment, delegation of decision making and reduced job monotony. The analysis shows how negative aspects of cellular manufacture such as lack of flexibility and poor fixed asset utilisation are relatively irrelevant and misleading in the broader context of the need to come to terms with the social stresses imposed on a company operating in the industrial environment of the present and the immediate future.
Resumo:
The verification and validation of engineering designs are of primary importance as they directly influence production performance and ultimately define product functionality and customer perception. Research in aspects of verification and validation is widely spread ranging from tools employed during the digital design phase, to methods deployed for prototype verification and validation. This paper reviews the standard definitions of verification and validation in the context of engineering design and progresses to provide a coherent analysis and classification of these activities from preliminary design, to design in the digital domain and the physical verification and validation of products and processes. The scope of the paper includes aspects of system design and demonstrates how complex products are validated in the context of their lifecycle. Industrial requirements are highlighted and research trends and priorities identified. © 2010 CIRP.
Resumo:
A discrete event simulation model was developed and used to estimate the storage area required for a proposed overseas textile manufacturing facility. It was found that the simulation was able to achieve this because of its ability to both store attribute values and to show queuing levels at an individual product level. It was also found that the process of undertaking the simulation project initiated useful discussions regarding the operation of the facility. Discrete event simulation is shown to be much more than an exercise in quantitative analysis of results and an important task of the simulation project manager is to initiate a debate among decision makers regarding the assumptions of how the system operates.
Resumo:
Logistics distribution network design is one of the major decision problems arising in contemporary supply chain management. The decision involves many quantitative and qualitative factors that may be conflicting in nature. This paper applies an integrated multiple criteria decision making approach to design an optimal distribution network. In the approach, the analytic hierarchy process (AHP) is used first to determine the relative importance weightings or priorities of alternative warehouses with respect to both deliverer oriented and customer oriented criteria. Then, the goal programming (GP) model incorporating the constraints of system, resource, and AHP priority is formulated to select the best set of warehouses without exceeding the limited available resources. In this paper, two commercial packages are used: Expert Choice for determining the AHP priorities of the warehouses, and LINDO for solving the GP model. © 2007 IEEE.
Resumo:
A new surface analysis technique has been developed which has a number of benefits compared to conventional Low Energy Ion Scattering Spectrometry (LEISS). A major potential advantage arising from the absence of charge exchange complications is the possibility of quantification. The instrumentation that has been developed also offers the possibility of unique studies concerning the interaction between low energy ions and atoms and solid surfaces. From these studies it may also be possible, in principle, to generate sensitivity factors to quantify LEISS data. The instrumentation, which is referred to as a Time-of-Flight Fast Atom Scattering Spectrometer has been developed to investigate these conjecture in practice. The development, involved a number of modifications to an existing instrument, and allowed samples to be bombarded with a monoenergetic pulsed beam of either atoms or ions, and provided the capability to analyse the spectra of scattered atoms and ions separately. Further to this a system was designed and constructed to allow incident, exit and azimuthal angles of the particle beam to be varied independently. The key development was that of a pulsed, and mass filtered atom source; which was developed by a cyclic process of design, modelling and experimentation. Although it was possible to demonstrate the unique capabilities of the instrument, problems relating to surface contamination prevented the measurement of the neutralisation probabilities. However, these problems appear to be technical rather than scientific in nature, and could be readily resolved given the appropriate resources. Experimental spectra obtained from a number of samples demonstrate some fundamental differences between the scattered ion and neutral spectra. For practical non-ordered surfaces the ToF spectra are more complex than their LEISS counterparts. This is particularly true for helium scattering where it appears, in the absence of detailed computer simulation, that quantitative analysis is limited to ordered surfaces. Despite this limitation the ToFFASS instrument opens the way for quantitative analysis of the 'true' surface region to a wider range of surface materials.
Resumo:
Using current software engineering technology, the robustness required for safety critical software is not assurable. However, different approaches are possible which can help to assure software robustness to some extent. For achieving high reliability software, methods should be adopted which avoid introducing faults (fault avoidance); then testing should be carried out to identify any faults which persist (error removal). Finally, techniques should be used which allow any undetected faults to be tolerated (fault tolerance). The verification of correctness in system design specification and performance analysis of the model, are the basic issues in concurrent systems. In this context, modeling distributed concurrent software is one of the most important activities in the software life cycle, and communication analysis is a primary consideration to achieve reliability and safety. By and large fault avoidance requires human analysis which is error prone; by reducing human involvement in the tedious aspect of modelling and analysis of the software it is hoped that fewer faults will persist into its implementation in the real-time environment. The Occam language supports concurrent programming and is a language where interprocess interaction takes place by communications. This may lead to deadlock due to communication failure. Proper systematic methods must be adopted in the design of concurrent software for distributed computing systems if the communication structure is to be free of pathologies, such as deadlock. The objective of this thesis is to provide a design environment which ensures that processes are free from deadlock. A software tool was designed and used to facilitate the production of fault-tolerant software for distributed concurrent systems. Where Occam is used as a design language then state space methods, such as Petri-nets, can be used in analysis and simulation to determine the dynamic behaviour of the software, and to identify structures which may be prone to deadlock so that they may be eliminated from the design before the program is ever run. This design software tool consists of two parts. One takes an input program and translates it into a mathematical model (Petri-net), which is used for modeling and analysis of the concurrent software. The second part is the Petri-net simulator that takes the translated program as its input and starts simulation to generate the reachability tree. The tree identifies `deadlock potential' which the user can explore further. Finally, the software tool has been applied to a number of Occam programs. Two examples were taken to show how the tool works in the early design phase for fault prevention before the program is ever run.
Resumo:
The thesis describes an investigation into methods for the specification, design and implementation of computer control systems for flexible manufacturing machines comprising multiple, independent, electromechanically-driven mechanisms. An analysis is made of the elements of conventional mechanically-coupled machines in order that the operational functions of these elements may be identified. This analysis is used to define the scope of requirements necessary to specify the format, function and operation of a flexible, independently driven mechanism machine. A discussion of how this type of machine can accommodate modern manufacturing needs of high-speed and flexibility is presented. A sequential method of capturing requirements for such machines is detailed based on a hierarchical partitioning of machine requirements from product to independent drive mechanism. A classification of mechanisms using notations, including Data flow diagrams and Petri-nets, is described which supports capture and allows validation of requirements. A generic design for a modular, IDM machine controller is derived based upon hierarchy of control identified in these machines. A two mechanism experimental machine is detailed which is used to demonstrate the application of the specification, design and implementation techniques. A computer controller prototype and a fully flexible implementation for the IDM machine, based on Petri-net models described using the concurrent programming language Occam, is detailed. The ability of this modular computer controller to support flexible, safe and fault-tolerant operation of the two intermittent motion, discrete-synchronisation independent drive mechanisms is presented. The application of the machine development methodology to industrial projects is established.
Resumo:
The key to the correct application of ANOVA is careful experimental design and matching the correct analysis to that design. The following points should therefore, be considered before designing any experiment: 1. In a single factor design, ensure that the factor is identified as a 'fixed' or 'random effect' factor. 2. In more complex designs, with more than one factor, there may be a mixture of fixed and random effect factors present, so ensure that each factor is clearly identified. 3. Where replicates can be grouped or blocked, the advantages of a randomised blocks design should be considered. There should be evidence, however, that blocking can sufficiently reduce the error variation to counter the loss of DF compared with a randomised design. 4. Where different treatments are applied sequentially to a patient, the advantages of a three-way design in which the different orders of the treatments are included as an 'effect' should be considered. 5. Combining different factors to make a more efficient experiment and to measure possible factor interactions should always be considered. 6. The effect of 'internal replication' should be taken into account in a factorial design in deciding the number of replications to be used. Where possible, each error term of the ANOVA should have at least 15 DF. 7. Consider carefully whether a particular factorial design can be considered to be a split-plot or a repeated measures design. If such a design is appropriate, consider how to continue the analysis bearing in mind the problem of using post hoc tests in this situation.
Resumo:
The objective of this work was to design, construct and commission a new ablative pyrolysis reactor and a high efficiency product collection system. The reactor was to have a nominal throughput of 10 kg/11r of dry biomass and be inherently scalable up to an industrial scale application of 10 tones/hr. The whole process consists of a bladed ablative pyrolysis reactor, two high efficiency cyclones for char removal and a disk and doughnut quench column combined with a wet walled electrostatic precipitator, which is directly mounted on top, for liquids collection. In order to aid design and scale-up calculations, detailed mathematical modelling was undertaken of the reaction system enabling sizes, efficiencies and operating conditions to be determined. Specifically, a modular approach was taken due to the iterative nature of some of the design methodologies, with the output from one module being the input to the next. Separate modules were developed for the determination of the biomass ablation rate, specification of the reactor capacity, cyclone design, quench column design and electrostatic precipitator design. These models enabled a rigorous design protocol to be developed capable of specifying the required reactor and product collection system size for specified biomass throughputs, operating conditions and collection efficiencies. The reactor proved capable of generating an ablation rate of 0.63 mm/s for pine wood at a temperature of 525 'DC with a relative velocity between the heated surface and reacting biomass particle of 12.1 m/s. The reactor achieved a maximum throughput of 2.3 kg/hr, which was the maximum the biomass feeder could supply. The reactor is capable of being operated at a far higher throughput but this would require a new feeder and drive motor to be purchased. Modelling showed that the reactor is capable of achieving a reactor throughput of approximately 30 kg/hr. This is an area that should be considered for the future as the reactor is currently operating well below its theoretical maximum. Calculations show that the current product collection system could operate efficiently up to a maximum feed rate of 10 kg/Fir, provided the inert gas supply was adjusted accordingly to keep the vapour residence time in the electrostatic precipitator above one second. Operation above 10 kg/hr would require some modifications to the product collection system. Eight experimental runs were documented and considered successful, more were attempted but due to equipment failure had to be abandoned. This does not detract from the fact that the reactor and product collection system design was extremely efficient. The maximum total liquid yield was 64.9 % liquid yields on a dry wood fed basis. It is considered that the liquid yield would have been higher had there been sufficient development time to overcome certain operational difficulties and if longer operating runs had been attempted to offset product losses occurring due to the difficulties in collecting all available product from a large scale collection unit. The liquids collection system was highly efficient and modeling determined a liquid collection efficiency of above 99% on a mass basis. This was validated due to the fact that a dry ice/acetone condenser and a cotton wool filter downstream of the collection unit enabled mass measurements of the amount of condensable product exiting the product collection unit. This showed that the collection efficiency was in excess of 99% on a mass basis.
Resumo:
The objective of this study has been to enable a greater understanding of the biomass gasification process through the development and use of process and economic models. A new theoretical equilibrium model of gasification is described using the operating condition called the adiabatic carbon boundary. This represents an ideal gasifier working at the point where the carbon in the feedstock is completely gasified. The model can be used as a `target' against which the results of real gasifiers can be compared, but it does not simulate the results of real gasifiers. A second model has been developed which uses a stagewise approach in order to model fluid bed gasification, and its results have indicated that pyrolysis and the reactions of pyrolysis products play an important part in fluid bed gasifiers. Both models have been used in sensitivity analyses: the biomass moisture content and gasifying agent composition were found to have the largest effects on performance, whilst pressure and heat loss had lesser effects. Correlations have been produced to estimate the total installed capital cost of gasification systems and have been used in an economic model of gasification. This has been used in a sensitivity analysis to determine the factors which most affect the profitability of gasification. The most important influences on gasifier profitability have been found to be feedstock cost, product selling price and throughput. Given the economic conditions of late 1985, refuse gasification for the production of producer gas was found to be viable at throughputs of about 2.5 tonnes/h dry basis and above, in the metropolitan counties of the United Kingdom. At this throughput and above, the largest element of product gas cost is the feedstock cost, the cost element which is most variable.
Resumo:
This dissertation studies the process of operations systems design within the context of the manufacturing organization. Using the DRAMA (Design Routine for Adopting Modular Assembly) model as developed by a team from the IDOM Research Unit at Aston University as a starting point, the research employed empirically based fieldwork and a survey to investigate the process of production systems design and implementation within four UK manufacturing industries: electronics assembly, electrical engineering, mechanical engineering and carpet manufacturing. The intention was to validate the basic DRAMA model as a framework for research enquiry within the electronics industry, where the initial IDOM work was conducted, and then to test its generic applicability, further developing the model where appropriate, within the other industries selected. The thesis contains a review of production systems design theory and practice prior to presenting thirteen industrial case studies of production systems design from the four industry sectors. The results and analysis of the postal survey into production systems design are then presented. The strategic decisions of manufacturing and their relationship to production systems design, and the detailed process of production systems design and operation are then discussed. These analyses are used to develop the generic model of production systems design entitled DRAMA II (Decision Rules for Analysing Manufacturing Activities). The model contains three main constituent parts: the basic DRAMA model, the extended DRAMA II model showing the imperatives and relationships within the design process, and a benchmark generic approach for the design and analysis of each component in the design process. DRAMA II is primarily intended for use by researchers as an analytical framework of enquiry, but is also seen as having application for manufacturing practitioners.
Resumo:
Investigation of the different approaches used by Expert Systems researchers to solve problems in the domain of Mechanical Design and Expert Systems was carried out. The techniques used for conventional formal logic programming were compared with those used when applying Expert Systems concepts. A literature survey of design processes was also conducted with a view to adopting a suitable model of the design process. A model, comprising a variation on two established ones, was developed and applied to a problem within what are described as class 3 design tasks. The research explored the application of these concepts to Mechanical Engineering Design problems and their implementation on a microcomputer using an Expert System building tool. It was necessary to explore the use of Expert Systems in this manner so as to bridge the gap between their use as a control structure and for detailed analytical design. The former application is well researched into and this thesis discusses the latter. Some Expert System building tools available to the author at the beginning of his work were evaluated specifically for their suitability for Mechanical Engineering design problems. Microsynics was found to be the most suitable on which to implement a design problem because of its simple but powerful Semantic Net Knowledge Representation structure and the ability to use other types of representation schemes. Two major implementations were carried out. The first involved a design program for a Helical compression spring and the second a gearpair system design. Two concepts were proposed in the thesis for the modelling and implementation of design systems involving many equations. The method proposed enables equation manipulation and analysis using a combination of frames, semantic nets and production rules. The use of semantic nets for purposes other than for psychology and natural language interpretation, is quite new and represents one of the major contributions to knowledge by the author. The development of a purpose built shell program for this type of design problems was recommended as an extension of the research. Microsynics may usefully be used as a platform for this development.