38 resultados para Student volunteers in social service
Resumo:
From a Service-Dominant Logic (S-DL) perspective, employees constitute operant resources that firms can draw to enhance the outcomes of innovation efforts. While research acknowledges that frontline employees (FLEs) constitute, through service encounters, a key interface for the transfer of valuable external knowledge into the firm, the range of potential benefits derived from FLE-driven innovation deserves more investigation. Using a sample of knowledge intensive business services firms (KIBS), this study examines how the collaboration with FLEs along the new service development (NSD) process, namely FLE co-creation, impacts on service innovation performance following two routes of different effects. Partial least squares structural equation modeling (PLS-SEM) results indicate that FLE co-creation benefits the NS success among FLEs and firm’s customers, the constituents of the resources route. FLE co-creation also has a positive effect on the NSD speed, which in turn enhances the NS quality. NSD speed and NS quality integrate the operational route, which proves to be the most effective path to impact the NS market performance. Accordingly, KIBS managers must value their FLEs as essential partners to achieve successful innovation from an internal and external perspective, and develop the appropriate mechanisms to guarantee their effective involvement along the NSD process.
Resumo:
Purpose: We examine the role of digital resources in the context of advanced service provision to determine their strategic potential. Approach: We conduct a theoretical review of the literature to identify digital resources which we subsequently analyse with regards to their value, rarity, inimitability and non-substitutability (VRIN). Findings: Our analysis shows that the strategic value of the digital resources is unlocked through their complementarity. Value: The research has implications for the management of advanced services and contributes towards the grounding of servitization research in the wider economic and management theory.
Resumo:
Topic classification (TC) of short text messages offers an effective and fast way to reveal events happening around the world ranging from those related to Disaster (e.g. Sandy hurricane) to those related to Violence (e.g. Egypt revolution). Previous approaches to TC have mostly focused on exploiting individual knowledge sources (KS) (e.g. DBpedia or Freebase) without considering the graph structures that surround concepts present in KSs when detecting the topics of Tweets. In this paper we introduce a novel approach for harnessing such graph structures from multiple linked KSs, by: (i) building a conceptual representation of the KSs, (ii) leveraging contextual information about concepts by exploiting semantic concept graphs, and (iii) providing a principled way for the combination of KSs. Experiments evaluating our TC classifier in the context of Violence detection (VD) and Emergency Responses (ER) show promising results that significantly outperform various baseline models including an approach using a single KS without linked data and an approach using only Tweets. Copyright 2013 ACM.
Resumo:
Uncertainty text detection is important to many social-media-based applications since more and more users utilize social media platforms (e.g., Twitter, Facebook, etc.) as information source to produce or derive interpretations based on them. However, existing uncertainty cues are ineffective in social media context because of its specific characteristics. In this paper, we propose a variant of annotation scheme for uncertainty identification and construct the first uncertainty corpus based on tweets. We then conduct experiments on the generated tweets corpus to study the effectiveness of different types of features for uncertainty text identification. © 2013 Association for Computational Linguistics.
Resumo:
In many e-commerce Web sites, product recommendation is essential to improve user experience and boost sales. Most existing product recommender systems rely on historical transaction records or Web-site-browsing history of consumers in order to accurately predict online users’ preferences for product recommendation. As such, they are constrained by limited information available on specific e-commerce Web sites. With the prolific use of social media platforms, it now becomes possible to extract product demographics from online product reviews and social networks built from microblogs. Moreover, users’ public profiles available on social media often reveal their demographic attributes such as age, gender, and education. In this paper, we propose to leverage the demographic information of both products and users extracted from social media for product recommendation. In specific, we frame recommendation as a learning to rank problem which takes as input the features derived from both product and user demographics. An ensemble method based on the gradient-boosting regression trees is extended to make it suitable for our recommendation task. We have conducted extensive experiments to obtain both quantitative and qualitative evaluation results. Moreover, we have also conducted a user study to gauge the performance of our proposed recommender system in a real-world deployment. All the results show that our system is more effective in generating recommendation results better matching users’ preferences than the competitive baselines.
Resumo:
This study explores differences between men and women entrepreneurs and social entrepreneurs. It explores the barriers and discriminatory effects that hinder women’s entrepreneurship, including access to finance in the European Union. The study includes four case studies covering the situation in the Czech Republic, Italy, Sweden, and the United Kingdom.
Resumo:
Individuals often imitate each other to fall into the typical group, leading to a self-organized state of typical behaviors in a community. In this paper, we model self-organization in social tagging systems and illustrate the underlying interaction and dynamics. Specifically, we introduce a model in which individuals adjust their own tagging tendency to imitate the average tagging tendency. We found that when users are of low confidence, they tend to imitate others and lead to a self-organized state with active tagging. On the other hand, when users are of high confidence and are stubborn to change, tagging becomes inactive. We observe a phase transition at a critical level of user confidence when the system changes from one regime to the other. The distributions of post length obtained from the model are compared to real data, which show good agreement. © 2011 American Physical Society.
Resumo:
We advance research on human capital and entrepreneurial entry and posit that, in order to generate value, social entrepreneurship requires different configurations of human capital than commercial entrepreneurship. We develop a multilevel framework to analyse the commonalities and differences between social and commercial entrepreneurship, including the impact of general and specific human capital, of national context and its moderating effect on the human capital-entrepreneurship relationship. We find that specific entrepreneurial human capital is relatively more important in commercial entrepreneurship, and general human capital in social entrepreneurship, and that the effects of human capital depend on the rule of law.