47 resultados para Stakeholder and Public Participation in Decision Making
Resumo:
This thesis reviews the main methodological developments in public sector investment appraisal and finds growing evidence that appraisal techniques are not fulfilling their earlier promise. It is suggested that an important reason for this failure lies in the inability of these techniques to handle uncertainty except in a highly circumscribed fashion. It is argued that a more fruitful approach is to strive for flexibility. Investment projects should be formulated with a view to making them responsive to a wide range of possible future events, rather than embodying a solution which is optimal for one configuration of circumstances only. The distinction drawn in economics between the short and the long run is used to examine the nature of flexibility. The concept of long run flexibility is applied to the pre-investment range of choice open to the decisionmaker. It is demonstrated that flexibility is reduced at a very early stage of decisionmaking by the conventional system of appraisal which evaluates only a small number of options. The pre-appraisal filtering process is considered further in relation to decisionmaking models. It is argued that for public sector projects the narrowing down of options is best understood in relation to an amended mixed scanning model which places importance on the process by which the 'national interest ' is determined. Short run flexibility deals with operational characteristics, the degree to which particular projects may respond to changing demands when the basic investment is already in place. The tension between flexibility and cost is noted. A short case study on the choice of electricity generating plant is presented. The thesis concludes with a brief examination of the approaches used by successive British governments to public sector investment, particularly in relation to the nationalised industries
Resumo:
Integrated supplier selection and order allocation is an important decision for both designing and operating supply chains. This decision is often influenced by the concerned stakeholders, suppliers, plant operators and customers in different tiers. As firms continue to seek competitive advantage through supply chain design and operations they aim to create optimized supply chains. This calls for on one hand consideration of multiple conflicting criteria and on the other hand consideration of uncertainties of demand and supply. Although there are studies on supplier selection using advanced mathematical models to cover a stochastic approach, multiple criteria decision making techniques and multiple stakeholder requirements separately, according to authors' knowledge there is no work that integrates these three aspects in a common framework. This paper proposes an integrated method for dealing with such problems using a combined Analytic Hierarchy Process-Quality Function Deployment (AHP-QFD) and chance constrained optimization algorithm approach that selects appropriate suppliers and allocates orders optimally between them. The effectiveness of the proposed decision support system has been demonstrated through application and validation in the bioenergy industry.
Resumo:
The performance of most operations systems is significantly affected by the interaction of human decision-makers. A methodology, based on the use of visual interactive simulation (VIS) and artificial intelligence (AI), is described that aims to identify and improve human decision-making in operations systems. The methodology, known as 'knowledge-based improvement' (KBI), elicits knowledge from a decision-maker via a VIS and then uses AI methods to represent decision-making. By linking the VIS and AI representation, it is possible to predict the performance of the operations system under different decision-making strategies and to search for improved strategies. The KBI methodology is applied to the decision-making surrounding unplanned maintenance operations at a Ford Motor Company engine assembly plant.
Resumo:
Children are increasingly being recognised as a significant force in the retail market place, as primary consumers, influencers of others, and as future customers. This paper adds to the literature on children as consumers by exploring their attitudinal responses to a specific group of products: Fair Trade lines. There has been no research to date that has specifically addressed children as consumers of Fair Trade or the ethical purchase decision-making process in this area. The methodological approach taken here is an essentially interpretive and naturalistic analysis of two focus groups of school children. The analysis found that there is an urgent need to develop meaningful Fair Trade brands that combine strong brand knowledge and positive brand images to bridge the ethical purchase gap between the formation of clear ethical attitudes and actual ethical purchase behaviour. Such an approach would both capture more of the children’s primary market and influence future purchase behaviour. It is argued that Fair Trade actors should coordinate new marketing communications campaigns that build brand knowledge structures holistically around the Fair Trade process and that extend beyond merely raising consumer awareness.
Resumo:
Extending the growing interest in affect in work groups, we propose that groups with distributed information make higher quality decisions when they are in a negative rather than a positive mood, but that these effects are moderated by group members' trait negative affect. In support of this hypothesis, an experiment (N = 175 groups) showed that positive mood led to lower quality decisions than did negative or neutral moods when group members were low in trait negative affect, whereas such mood effects were not observed in groups higher in trait negative affect. Mediational analysis based on behavioral observations of group process confirmed that group information elaboration mediated this effect. These results provide an important caveat on the benefits of positive moods in work groups, and suggest that the study of trait × state affect interactions is an important avenue for future research.
Resumo:
Guest editorial Ali Emrouznejad is a Senior Lecturer at the Aston Business School in Birmingham, UK. His areas of research interest include performance measurement and management, efficiency and productivity analysis as well as data mining. He has published widely in various international journals. He is an Associate Editor of IMA Journal of Management Mathematics and Guest Editor to several special issues of journals including Journal of Operational Research Society, Annals of Operations Research, Journal of Medical Systems, and International Journal of Energy Management Sector. He is in the editorial board of several international journals and co-founder of Performance Improvement Management Software. William Ho is a Senior Lecturer at the Aston University Business School. Before joining Aston in 2005, he had worked as a Research Associate in the Department of Industrial and Systems Engineering at the Hong Kong Polytechnic University. His research interests include supply chain management, production and operations management, and operations research. He has published extensively in various international journals like Computers & Operations Research, Engineering Applications of Artificial Intelligence, European Journal of Operational Research, Expert Systems with Applications, International Journal of Production Economics, International Journal of Production Research, Supply Chain Management: An International Journal, and so on. His first authored book was published in 2006. He is an Editorial Board member of the International Journal of Advanced Manufacturing Technology and an Associate Editor of the OR Insight Journal. Currently, he is a Scholar of the Advanced Institute of Management Research. Uses of frontier efficiency methodologies and multi-criteria decision making for performance measurement in the energy sector This special issue aims to focus on holistic, applied research on performance measurement in energy sector management and for publication of relevant applied research to bridge the gap between industry and academia. After a rigorous refereeing process, seven papers were included in this special issue. The volume opens with five data envelopment analysis (DEA)-based papers. Wu et al. apply the DEA-based Malmquist index to evaluate the changes in relative efficiency and the total factor productivity of coal-fired electricity generation of 30 Chinese administrative regions from 1999 to 2007. Factors considered in the model include fuel consumption, labor, capital, sulphur dioxide emissions, and electricity generated. The authors reveal that the east provinces were relatively and technically more efficient, whereas the west provinces had the highest growth rate in the period studied. Ioannis E. Tsolas applies the DEA approach to assess the performance of Greek fossil fuel-fired power stations taking undesirable outputs into consideration, such as carbon dioxide and sulphur dioxide emissions. In addition, the bootstrapping approach is deployed to address the uncertainty surrounding DEA point estimates, and provide bias-corrected estimations and confidence intervals for the point estimates. The author revealed from the sample that the non-lignite-fired stations are on an average more efficient than the lignite-fired stations. Maethee Mekaroonreung and Andrew L. Johnson compare the relative performance of three DEA-based measures, which estimate production frontiers and evaluate the relative efficiency of 113 US petroleum refineries while considering undesirable outputs. Three inputs (capital, energy consumption, and crude oil consumption), two desirable outputs (gasoline and distillate generation), and an undesirable output (toxic release) are considered in the DEA models. The authors discover that refineries in the Rocky Mountain region performed the best, and about 60 percent of oil refineries in the sample could improve their efficiencies further. H. Omrani, A. Azadeh, S. F. Ghaderi, and S. Abdollahzadeh presented an integrated approach, combining DEA, corrected ordinary least squares (COLS), and principal component analysis (PCA) methods, to calculate the relative efficiency scores of 26 Iranian electricity distribution units from 2003 to 2006. Specifically, both DEA and COLS are used to check three internal consistency conditions, whereas PCA is used to verify and validate the final ranking results of either DEA (consistency) or DEA-COLS (non-consistency). Three inputs (network length, transformer capacity, and number of employees) and two outputs (number of customers and total electricity sales) are considered in the model. Virendra Ajodhia applied three DEA-based models to evaluate the relative performance of 20 electricity distribution firms from the UK and the Netherlands. The first model is a traditional DEA model for analyzing cost-only efficiency. The second model includes (inverse) quality by modelling total customer minutes lost as an input data. The third model is based on the idea of using total social costs, including the firm’s private costs and the interruption costs incurred by consumers, as an input. Both energy-delivered and number of consumers are treated as the outputs in the models. After five DEA papers, Stelios Grafakos, Alexandros Flamos, Vlasis Oikonomou, and D. Zevgolis presented a multiple criteria analysis weighting approach to evaluate the energy and climate policy. The proposed approach is akin to the analytic hierarchy process, which consists of pairwise comparisons, consistency verification, and criteria prioritization. In the approach, stakeholders and experts in the energy policy field are incorporated in the evaluation process by providing an interactive mean with verbal, numerical, and visual representation of their preferences. A total of 14 evaluation criteria were considered and classified into four objectives, such as climate change mitigation, energy effectiveness, socioeconomic, and competitiveness and technology. Finally, Borge Hess applied the stochastic frontier analysis approach to analyze the impact of various business strategies, including acquisition, holding structures, and joint ventures, on a firm’s efficiency within a sample of 47 natural gas transmission pipelines in the USA from 1996 to 2005. The author finds that there were no significant changes in the firm’s efficiency by an acquisition, and there is a weak evidence for efficiency improvements caused by the new shareholder. Besides, the author discovers that parent companies appear not to influence a subsidiary’s efficiency positively. In addition, the analysis shows a negative impact of a joint venture on technical efficiency of the pipeline company. To conclude, we are grateful to all the authors for their contribution, and all the reviewers for their constructive comments, which made this special issue possible. We hope that this issue would contribute significantly to performance improvement of the energy sector.
Resumo:
This paper discusses the use of a Model developed by Aston Business School to record the work load of its academic staff. By developing a database to register annual activity in all areas of teaching, administration and research the School has created a flexible tool which can be used for facilitating both day-to-day managerial and longer term strategic decisions. This paper gives a brief outline of the Model and discusses the factors which were taken into account when setting it up. Particular attention is paid to the uses made of the Model and the problems encountered in developing it. The paper concludes with an appraisal of the Model’s impact and of additional developments which are currently being considered. Aston Business School has had a Load Model in some form for many years. The Model has, however, been refined over the past five years, so that it has developed into a form which can be used for a far greater number of purposes within the School. The Model is coordinated by a small group of academic and administrative staff, chaired by the Head of the School. This group is responsible for the annual cycle of collecting and inputting data, validating returns, carrying out analyses of the raw data, and presenting the mater ial to different sections of the School. The authors of this paper are members of this steer ing group.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Strategic decision making (SDM) in a small business is an informal, highly personalised cognitive process which is emergent in nature. SDM determines the extent to which decision makers generate innovative decision-making options, and is therefore critical in order for small businesses to achieve strategic flexibility to enable strategic adaptation to turbulent environments. By examining SDM in small businesses, this research has the potential to address a major criticism of the extant literature in that it has been pre-occupied with measuring the formality of strategic planning and has neglected the informal, highly personalised and cognitive nature of strategic decision making in a small businesses.
Resumo:
This paper examines UK and US primary care doctors' decision-making about older (aged 75 years) and midlife (aged 55 years) patients presenting with coronary heart disease (CHD). Using an analytic approach based on conceptualising clinical decision-making as a classification process, it explores the ways in which doctors' cognitive processes contribute to ageism in health-care at three key decision points during consultations. In each country, 56 randomly selected doctors were shown videotaped vignettes of actors portraying patients with CHD. The patients' ages (55 or 75 years), gender, ethnicity and social class were varied systematically. During the interviews, doctors gave free-recall accounts of their decision-making. The results do not establish that there was substantial ageism in the doctors' decisions, but rather suggest that diagnostic processes pay insufficient attention to the significance of older patients' age and its association with the likelihood of co-morbidity and atypical disease presentations. The doctors also demonstrated more limited use of 'knowledge structures' when diagnosing older than midlife patients. With respect to interventions, differences in the national health-care systems rather than patients' age accounted for the differences in doctors' decisions. US doctors were significantly more concerned about the potential for adverse outcomes if important diagnoses were untreated, while UK general practitioners cited greater difficulty in accessing diagnostic tests.
Resumo:
This study draws upon effectuation and causation as examples of planning-based and flexible decision-making logics, and investigates dynamics in the use of both logics. The study applies a longitudinal process research approach to investigate strategic decision-making in new venture creation over time. Combining qualitative and quantitative methods, we analyze 385 decision events across nine technology-based ventures. Our observations suggest a hybrid perspective on strategic decision-making, demonstrating how effectuation and causation logics are combined, and how entrepreneurs’ emphasis on these logics shifts and re-shifts over time. We induce a dynamic model which extends the literature on strategic decision-making in venture creation.