60 resultados para Stainless steels


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The creep rupture properties of cast ½Cr½Mo¼V and 1Cr1Mo¼V alloy steel used in the manufacture of power station steam generating plant. have been investigated. The effects of constraint and geometry on the creep rupture properties are also considered. The validity of various criteria controlling macroscopic creep crack growth in cast CrMoV alloys has been examined. It is found that neither the stress intensity factor nor reference stress correlate satisfactorily the creep crack growth rates at the test temperature of 550°C. Certain minimum displacements must be achieved for crack initiation and propagation. It is found that this displacement as measured by crack opening displacement or crack aspect ratio, is the same in both compact tension and centre-cracked panel geometries, is invariant with crack length and decreases with increasing constraint. The effect of constraint on creep crack growth rate in the two geometries is less conclusive. A new model describing creep crack growth in cast CrMoV alloy steels has been developed. The model is based on the results from a numerical finite element creep analysis of the relaxation and redistribution of stress ahead of an incubating creep crack . It is found that macroscopic creep crack growth in a material undergoing either plane stress or plane strain deformation can be described by a fracture stress which is based on the Von Mises equivalent stress. It has been shown that this model is capable of rationalising all of the experimental crack velocity data from the cast CrMoV alloys. The resultant degree of data correlation is far superior to that obtained when using the stress intensity factor or reference stress. A cumulative damage creep fracture model based upon the results from the numerical analysis has been developed. It is found that the model is capable of predicting the behaviour of propagating creep cracks in cast CrMoV alloys from smooth bar creep rupture data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A range of plain carbon, carbon-manganese and low alloy cast steels were tested in order to determine their various fracture toughness values under elastic and elastic-plastic conditions. The main fracture toughness parameters which are considered are (1) Linear Elastic Fracture Mechanics (LEFM), (2) the J-Contour Integral, and (3) Crack Opening Displacement (COD). Results are obtained from fracture toughness specimens of various dimensions and the relevance of the validity criteria to cast steels is considered in some detail. In addition, the effect of casting position on specimen toughness values was noted. Valid KIC results according to LEFM, were obtained for three of the eight cast steels tested. Although KIC values from LEFM were not obtained from the remaining five steels, critical COD and J-integral values were determined. It is postulated that these values and particularly the critical J values can be used, with confidence for material selection or in defect tolerance calculations using these steels. Toughness values were found to vary with casting position in several of the steels tested and the possible reasons for such variations are discussed in the Thesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrasonic waves interact in a complex manner with the metallurgical structure of austenitic weldments resulting in ambiguity when interpreting reflections and at times in misinterpretation of defect positions. In this work, current knowledge of the structure of austenitic welds is outlined, and the influence of this structure on the propagation of ultrasonic waves is reviewed. Using an established and highly accurate technique, data on velocity variations as a function of the angle between the direction of soundwave propagation and the axes of preferred grain orientation existing in such welds, are experimentally obtained. These results and existing theory are used to provide quantitative evidence of (i) anisotropy factors in austenitic welds, (ii) beam skewing effects for different wave modes and polarizations, and (iii) the extent of acoustic impedance mismatch between parent and weld metals. The existence of "false" indications is demonstrated, and suggestions are made into their nature. The effectiveness of conventional transverse wave techniques for inspecting artificial and real defects existing in austenitic weldments is experimentally investigated, the limitations are demonstrated, and possible solutions are proposed. The possibilities offered by the use of longitudinal angle probes for ultrasonic inspection of real and artificial defects existing in austenitic weldments are experimentally investigated, and parameters such as probe angle, frequency and scanning position are evaluated. Detailed work has been carried out on the interaction of ultrasound with fatigue and corrosion-fatigue cracks in the weld metal and the heat affected zones (HAZs) of 316 and 347 types of austenitic weldments, together with the influence of elastic compressive stresses, defect topography and defect geometry. Practical applications of all results are discussed, and more effective means of ultrasonic inspection of austenitic weldments are suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of thermochemical treatment namely carburising on the fatigue behaviour of one carbon and two alloy steels has been studied in rotating and unidirectional bending. The effect of carbon profile on the unidirect¬ional bending fatigue strength of 63SA14 was assessed, and it was found that single stage carburising with a surface carbon content of 0.8% has resulted in a higher fatigue strength than other types of carbon profiles. Residual stresses and other metallurgical variables arising from different carbon profiles, were also considered. The highest compressive stresses h~e resulted from boost-diffuse-carburising. On the other hand surface decarburisation was associated with tensile residual stresses and a reduced fatigue strength. Retained austenite was found to be detrimental in unidirectional bending fatigue; however its presence in carburised 83SAIS did not seem to influence the rotating bending fatigue strength. Carbide particles in globular and/or intergranular form were detrimental to compressive residual stresses; the unidirectional bending fatigue strength is markedly lowered. The highest fatigue strength was accomplished by vacuum carburising. The absence of internal oxidation was the key factor in the increased fatigue strength; the presence of uniformly distributed fine carbide particles did not upset the superior fatigue strength of vacuum carburised pieces. The effect of mean stress on the fatigue strength of carburised 63SA14 was studied. Increasing the mean stress as would be expected resulted in a decreased fatigue strength. Carburisation showed its advantages at low mean stress, but at high mean stress it offers little advantage over the uncarburised hardened conditions. Notch effect was also studied in unidirectional bending of carburised 080MlS. The general trend showed that the fatigue strength decreases with increasing the stress concentration factor. But different carburising conditions have different effect on notch sensitivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrocarbons are the most common form of energy used to date. The activities involving exploration and exploitation of large oil and gas fields are constantly in operation and have extended to such hostile environments as the North Sea. This enforces much greater demands on the materials which are used, and the need for enhancing the endurance of the existing ones which must continue parallel to the explorations. Due to their ease in fabrication, relatively high mechanical properties and low costs, steels are the most widely favoured material for the construction of offshore platforms. The most critical part of an offshore structure prone to failure are the welded nodal joints, particulary those which are used within the vicinity of the splash zones. This is an area of high complex stress concentrations, varying mechanical and metallurgical properties in addition to severe North Sea environmental conditions. The main are of this work has been concerned with the durability studies of this type of steel, based on the concept of the worst case analysis, consisting of combinations of welds of varying qualities, various degrees of stress concentrations and the environmental conditions of stress corrosion and hydrogen embrittlement. The experiments have been designed to reveal significance of defects as sites of crack initiation in the welded steels and the extent to which stress corrosion and hydrogen embrittlement will limit their durability. This has been done for various heat treatments and in some experiments deformation has been forced through the welded zone of the specimens to reveal the mechanical properties of the welds themselves to provide data for finite element simulations. A comparison of the results of these simulations with the actual deformation and fracture behaviour has been done to reveal the extent to which both mechanical and metallurgical factors control behaviour of the steels in the hostile environments of high stress, corrosion, and hydrogen embrittlement at their surface.