34 resultados para Spray drift


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of antimicrobial peptides and proteins as potential therapeutic agents in the management of multi-drug resistant infections is considered an attractive concept especially since such compounds should theoretically have low immunogenicity, high bioavailability with negligible toxicity. In this study we investigated the potential of developing a dry powder inhaler formulation of lactoferrin (a multifunctional iron binding protein). To achieve this, the protein was spray dried from a water only feedstock with suitably adjusted spray drying parameters. The particle size, degree of crystallinity, moisture content and yield of the spray dried powders along with the minimum bactericidal concentration (MBC) against Pseudomonas aeruginosa strain PAO1, were assessed. Dry powder inhaler formulations were prepared, and in vitro assessment studies using the multistage impinger were carried out to assess the aerosolisation performance of the formulations. Data obtained indicate that spray dried lactoferrin retains activity against biofilms and may be successfully employed in the treatment of chronic airway infections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spray zone is an important region to control nucleation of granules in a high shear granulator. In this study, a spray zone with cross flow is quantified as a well-mixed compartment in a high shear granulator. Granulation kinetics is quantitatively derived at both particle-scale and spray zone-scale. Two spatial decay rates, DGSDR (droplet-granule spatial decay rate) ζDG and DPSDR (droplet-primary particle spatial decay rate) ζDP, which are functions of volume fraction and diameter of particulate species within the powder bed, are defined to simplify the deduction. It is concluded that in cross flow, explicit analytical results show that the droplet concentration is subject to exponential decay with depth which produces a numerically infinite depth of spray zone in a real penetration process. In a well-mixed spray zone, the depth of the spray zone is 4/(ζDG + ζDP) and π2/3(ζDG + ζDP) in cuboid and cylinder shape, respectively. The first-order droplet-based collision rates of, nucleation rate B0 and rewetting rate RW0 are uncorrelated with the flow pattern and shape of the spray zone. The second-order droplet-based collision rate, nucleated granule-granule collision rate RGG, is correlated with the mixing pattern. Finally, a real formulation case of a high shear granulation process is used to estimate the size of the spray zone. The results show that the spray zone is a thin layer at the powder bed surface. We present, for the first time, the spray zone as a well-mixed compartment. The granulation kinetics of a well-mixed spray zone could be integrated into a Population Balance Model (PBM), particularly to aid development of a distributed model for product quality prediction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sustained delivery of multiple agents to the lung offers potential benefits to patients. This study explores the preparation of highly respirable dual-loaded spray-dried double emulsions. Spray-dried powders were produced from water-in-oil-in-water (w/o/w) double emulsions, containing salbutamol sulphate and/or beclometasone dipropionate in varying phases. The double emulsions contained the drug release modifier polylactide co-glycolide (PLGA 50 : 50) in the intermediate organic phase of the original micro-emulsion and low molecular weight chitosan (Mw<190 kDa: emulsion stabilizer) and leucine (aerosolization enhancer) in the tertiary aqueous phase. Following spray-drying resultant powders were physically characterized: with in vitro aerosolization performance and drug release investigated using a Multi-Stage Liquid Impinger and modified USP II dissolution apparatus, respectively. Powders generated were of a respirable size exhibiting emitted doses of over 95% and fine particle fractions of up to 60% of the total loaded dose. Sustained drug release profiles were observed during dissolution for powders containing agents in the primary aqueous and secondary organic phases of the original micro-emulsion; the burst release of agents was witnessed from the tertiary aqueous phase. The novel spray-dried emulsions from this study would be expected to deposit and display sustained release character in the lung.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of sodium carboxymethylcellulose (NaCMC) as a spray-drying excipient in the preparation of inhalable formulations of proteins was investigated, using alkaline phosphatase as a model functional protein. Two spray-dried powders were investigated: a control powder comprising 100% (w/w) alkaline phosphatase and a test powder comprising 67% (w/w) NaCMC and 33% (w/w) alkaline phosphatase. Following physicochemical characterisation, the powders were prepared as both dry powder inhaler (DPI) and pressurised metered dose inhaler (pMDI) formulations. The aerosolisation performance of the formulations was assessed using a Multi-Stage Liquid Impinger, both immediately after preparation and over a 16-week storage period. Formulating the control powder as a DPI resulted in a poor fine particle fraction (FPF: 10%), whereas the FPF of the NaCMC-modified DPI formulation was significantly greater (47%). When the powders were formulated as pMDI systems, the control and NaCMC-modified powders demonstrated FPFs of 52% and 55%, respectively. Following storage, reduced FPF was observed for all formulations except the NaCMC-modified pMDI system; the performance of this formulation following storage was statistically equivalent to that immediately following preparation. Co-spray-drying proteins and peptides with NaCMC may therefore offer an alternative method for the preparation of stable and respirable pMDI formulations for pulmonary delivery. © 2010 Elsevier B.V.