54 resultados para Spectral Line Broadening (Slb) Model
Resumo:
A theoretical model is developed to describe the propagation of ultra-short optical pulses in fiber transmission systems in the quasi-linear regime, with periodically inserted in-line lumped nonlinear optical devices. Stable autosoliton solutions are obtained for a particular application of the general theory.
Resumo:
Mood stabilising drugs such as lithium (LiCl) and valproic acid (VPA) are the first line agents for treating conditions such as Bipolar disorder and Epilepsy. However, these drugs have potential developmental effects that are not fully understood. This study explores the use of a simple human neurosphere-based in vitro model to characterise the pharmacological and toxicological effects of LiCl and VPA using gene expression changes linked to phenotypic alterations in cells. Treatment with VPA and LiCl resulted in the differential expression of 331 and 164 genes respectively. In the subset of VPA targeted genes, 114 were downregulated whilst 217 genes were upregulated. In the subset of LiCl targeted genes, 73 were downregulated and 91 were upregulated. Gene ontology (GO) term enrichment analysis was used to highlight the most relevant GO terms associated with a given gene list following toxin exposure. In addition, in order to phenotypically anchor the gene expression data, changes in the heterogeneity of cell subtype populations and cell cycle phase were monitored using flow cytometry. Whilst LiCl exposure did not significantly alter the proportion of cells expressing markers for stem cells/undifferentiated cells (Oct4, SSEA4), neurons (Neurofilament M), astrocytes (GFAP) or cell cycle phase, the drug caused a 1.4-fold increase in total cell number. In contrast, exposure to VPA resulted in significant upregulation of Oct4, SSEA, Neurofilament M and GFAP with significant decreases in both G2/M phase cells and cell number. This neurosphere model might provide the basis of a human-based cellular approach for the regulatory exploration of developmental impact of potential toxic chemicals.
Resumo:
Over the past forty years the corporate identity literature has developed to a point of maturity where it currently contains many definitions and models of the corporate identity construct at the organisational level. The literature has evolved by developing models of corporate identity or in considering corporate identity in relation to new and developing themes, e.g. corporate social responsibility. It has evolved into a multidisciplinary domain recently incorporating constructs from other literature to further its development. However, the literature has a number of limitations. It remains that an overarching and universally accepted definition of corporate identity is elusive, potentially leaving the construct with a lack of clear definition. Only a few corporate identity definitions and models, at the corporate level, have been empirically tested. The corporate identity construct is overwhelmingly defined and theoretically constructed at the corporate level, leaving the literature without a detailed understanding of its influence at an individual stakeholder level. Front-line service employees (FLEs), form a component in a number of corporate identity models developed at the organisational level. FLEs deliver the services of an organisation to its customers, as well as represent the organisation by communicating and transporting its core defining characteristics to customers through continual customer contact and interaction. This person-to-person contact between an FLE and the customer is termed a service encounter, where service encounters influence a customer’s perception of both the service delivered and the associated level of service quality. Therefore this study for the first time defines, theoretically models and empirically tests corporate identity at the individual FLE level, termed FLE corporate identity. The study uses the services marketing literature to characterise an FLE’s operating environment, arriving at five potential dimensions to the FLE corporate identity construct. These are scrutinised against existing corporate identity definitions and models to arrive at a definition for the construct. In reviewing the corporate identity, services marketing, branding and organisational psychology literature, a theoretical model is developed for FLE corporate identity, which is empirically and quantitatively tested, with FLEs in seven stores of a major national retailer. Following rigorous construct reliability and validity testing, the 601 usable responses are used to estimate a confirmatory factor analysis and structural equation model for the study. The results for the individual hypotheses and the structural model are very encouraging, as they fit the data well and support a definition of FLE corporate identity. This study makes contributions to the branding, services marketing and organisational psychology literature, but its principal contribution is to extend the corporate identity literature into a new area of discourse and research, that of FLE corporate identity
Resumo:
Background - Our previous studies showed that the direct injection of an adenovirus construct expressing urokinase-type plasminogen activator (uPA) into experimental venous thrombi significantly reduces thrombus weight. The systemic use of adenovirus vectors is limited by inherent hepatic tropism and inflammatory response. As macrophages are recruited into venous thrombi, it is reasonable to speculate that these cells could be used to target the adenovirus uPA (ad-uPA) gene construct to the thrombus. The aims of this study were to determine whether macrophages transduced with ad-uPA have increased fibrinolytic activity and whether systemic injection of transduced cells could be used to target uPA expression to the thrombus and reduce its size. Methods - The effect of up-regulating uPA was examined in an immortalized macrophage cell line (MM6) and macrophages differentiated from human blood monocyte-derived macrophages (HBMMs). Cells were infected with ad-uPA or blank control virus (ad-blank). Fibrinolytic mediator expression, cell viability, and cytokine expression were measured by activity assays and enzyme-linked immunosorbent assays. Monocyte migration was measured using a modified Boyden chamber assay. A model of venous thrombosis was developed and characterized in mice with severe combined immunodeficiency (SCID). This model was used to study whether systemically administered macrophages over-expressing uPA reduced thrombus size. Uptake of HBMMs into the thrombus induced in these mice was confirmed by a combination of PKH2-labeled cell tracking and colocalization with human leukocyte antigen (HLA) by immunohistology. Results - Compared with ad-blank, treated HBMMs transduction with ad-uPA increased uPA production by >1000-fold (P = .003), uPA activity by 150-fold (P = .0001), and soluble uPA receptor (uPAR) by almost twofold (P = .043). Expression of plasminogen activator inhibitor (PAI-1) and PAI-2 was decreased by about twofold (P = .011) and threefold (P = .005), respectively. Up-regulation of uPA had no effect on cell viability or inflammatory cytokine production compared with ad-blank or untreated cells. Ad-uPA transduction increased the migration rate of HBMMs (about 20%, P = .03) and MM6 cells (>twofold, P = .005) compared with ad-blank treated controls. Human macrophage recruitment into the mouse thrombus was confirmed by the colocalization of HLA with the PKH2-marked cells. Systemic injection of uPA-up-regulated HBMMs reduced thrombus weight by approximately 20% compared with ad-blank (P = .038) or sham-treated controls (P = .0028). Conclusion - Transduction of HBBM with ad-uPA increases their fibrinolytic activity. Systemic administration of uPA up-regulated HBBMs reduced thrombus size in an experimental model of venous thrombosis. Alternative methods of delivering fibrinolytic agents are worth exploring.
Resumo:
Long period gratings (LPGs) were written into a D-shaped optical fibre that has an elliptical core with a W-shaped refractive index profile and the first detailed investigation of such LPGs is presented. The LPGs’ attenuation bands were found to be sensitive to the polarisation of the interrogating light with a spectral separation of about 15 nm between the two orthogonal polarisation states. A finite element method was successfully used to model many of the behavioural features of the LPGs. In addition, two spectrally overlapping attenuation bands corresponding to orthogonal polarisation states were observed; modelling successfully reproduced this spectral feature. The spectral sensitivity of both orthogonal states was experimentally measured with respect to temperature and bending. These LPG devices produced blue and red wavelength shifts depending upon the orientation of the bend with measured maximum sensitivities of -3.56 and +6.51 nm m, suggesting that this type of fibre LPG may be useful as a shape/bend orientation sensor with reduced errors associated with polarisation dependence. The use of neighbouring bands to discriminate between temperature and bending was also demonstrated, leading to an overall curvature error of ±0.14 m-1 and an overall temperature error of ±0.3 °C with a maximum polarisation dependence error of ±8 × 10-2 m-1 for curvature and ±5 × 10-2 °C for temperature.
Resumo:
We have developed a new technique for extracting histological parameters from multi-spectral images of the ocular fundus. The new method uses a Monte Carlo simulation of the reflectance of the fundus to model how the spectral reflectance of the tissue varies with differing tissue histology. The model is parameterised by the concentrations of the five main absorbers found in the fundus: retinal haemoglobins, choroidal haemoglobins, choroidal melanin, RPE melanin and macular pigment. These parameters are shown to give rise to distinct variations in the tissue colouration. We use the results of the Monte Carlo simulations to construct an inverse model which maps tissue colouration onto the model parameters. This allows the concentration and distribution of the five main absorbers to be determined from suitable multi-spectral images. We propose the use of "image quotients" to allow this information to be extracted from uncalibrated image data. The filters used to acquire the images are selected to ensure a one-to-one mapping between model parameters and image quotients. To recover five model parameters uniquely, images must be acquired in six distinct spectral bands. Theoretical investigations suggest that retinal haemoglobins and macular pigment can be recovered with RMS errors of less than 10%. We present parametric maps showing the variation of these parameters across the posterior pole of the fundus. The results are in agreement with known tissue histology for normal healthy subjects. We also present an early result which suggests that, with further development, the technique could be used to successfully detect retinal haemorrhages.
Resumo:
The concept of random lasers exploiting multiple scattering of photons in an amplifying disordered medium in order to generate coherent light without a traditional laser resonator has attracted a great deal of attention in recent years. This research area lies at the interface of the fundamental theory of disordered systems and laser science. The idea was originally proposed in the context of astrophysics in the 1960s by V.S. Letokhov, who studied scattering with "negative absorption" of the interstellar molecular clouds. Research on random lasers has since developed into a mature experimental and theoretical field. A simple design of such lasers would be promising for potential applications. However, in traditional random lasers the properties of the output radiation are typically characterized by complex features in the spatial, spectral and time domains, making them less attractive than standard laser systems in terms of practical applications. Recently, an interesting and novel type of one-dimensional random laser that operates in a conventional telecommunication fibre without any pre-designed resonator mirrors-random distributed feedback fibre laser-was demonstrated. The positive feedback required for laser generation in random fibre lasers is provided by the Rayleigh scattering from the inhomogeneities of the refractive index that are naturally present in silica glass. In the proposed laser concept, the randomly backscattered light is amplified through the Raman effect, providing distributed gain over distances up to 100km. Although an effective reflection due to the Rayleigh scattering is extremely small (~0.1%), the lasing threshold may be exceeded when a sufficiently large distributed Raman gain is provided. Such a random distributed feedback fibre laser has a number of interesting and attractive features. The fibre waveguide geometry provides transverse confinement, and effectively one-dimensional random distributed feedback leads to the generation of a stationary near-Gaussian beam with a narrow spectrum. A random distributed feedback fibre laser has efficiency and performance that are comparable to and even exceed those of similar conventional fibre lasers. The key features of the generated radiation of random distributed feedback fibre lasers include: a stationary narrow-band continuous modeless spectrum that is free of mode competition, nonlinear power broadening, and an output beam with a Gaussian profile in the fundamental transverse mode (generated both in single mode and multi-mode fibres).This review presents the current status of research in the field of random fibre lasers and shows their potential and perspectives. We start with an introductory overview of conventional distributed feedback lasers and traditional random lasers to set the stage for discussion of random fibre lasers. We then present a theoretical analysis and experimental studies of various random fibre laser configurations, including widely tunable, multi-wavelength, narrow-band generation, and random fibre lasers operating in different spectral bands in the 1-1.6μm range. Then we discuss existing and future applications of random fibre lasers, including telecommunication and distributed long reach sensor systems. A theoretical description of random lasers is very challenging and is strongly linked with the theory of disordered systems and kinetic theory. We outline two key models governing the generation of random fibre lasers: the average power balance model and the nonlinear Schrödinger equation based model. Recently invented random distributed feedback fibre lasers represent a new and exciting field of research that brings together such diverse areas of science as laser physics, the theory of disordered systems, fibre optics and nonlinear science. Stable random generation in optical fibre opens up new possibilities for research on wave transport and localization in disordered media. We hope that this review will provide background information for research in various fields and will stimulate cross-disciplinary collaborations on random fibre lasers. © 2014 Elsevier B.V.
Resumo:
For the first time we report full numerical NLSE-based modeling of generation properties of random distributed feedback fiber laser based on Rayleigh scattering. The model which takes into account the random backscattering via its average strength only describes well power and spectral properties of random DFB fiber lasers. The influence of dispersion and nonlinearity on spectral and statistical properties is investigated. The evidence of non-gaussian intensity statistics is found. © 2013 Optical Society of America.
Resumo:
Using the integrable nonlinear Schrodinger equation (NLSE) as a channel model, we describe the application of nonlinear spectral management for effective mitigation of all nonlinear distortions induced by the fiber Kerr effect. Our approach is a modification and substantial development of the so-called eigenvalue communication idea first presented in A. Hasegawa, T. Nyu, J. Lightwave Technol. 11, 395 (1993). The key feature of the nonlinear Fourier transform (inverse scattering transform) method is that for the NLSE, any input signal can be decomposed into the so-called scattering data (nonlinear spectrum), which evolve in a trivial manner, similar to the evolution of Fourier components in linear equations. We consider here a practically important weakly nonlinear transmission regime and propose a general method of the effective encoding/modulation of the nonlinear spectrum: The machinery of our approach is based on the recursive Fourier-type integration of the input profile and, thus, can be considered for electronic or all-optical implementations. We also present a novel concept of nonlinear spectral pre-compensation, or in other terms, an effective nonlinear spectral pre-equalization. The proposed general technique is then illustrated through particular analytical results available for the transmission of a segment of the orthogonal frequency division multiplexing (OFDM) formatted pattern, and through WDM input based on Gaussian pulses. Finally, the robustness of the method against the amplifier spontaneous emission is demonstrated, and the general numerical complexity of the nonlinear spectrum usage is discussed. © 2013 Optical Society of America.
Resumo:
Nitration of tyrosine in proteins and peptides is a post-translational modification that occurs under conditions of oxidative stress. It is implicated in a variety of medical conditions, including neurodegenerative and cardiovascular diseases. However, monitoring tyrosine nitration and understanding its role in modifying biological function remains a major challenge. In this work, we investigate the use of electron-vibration-vibration (EVV) two-dimensional infrared (2DIR) spectroscopy for the study of tyrosine nitration in model peptides. We demonstrate the ability of EVV 2DIR spectroscopy to differentiate between the neutral and deprotonated states of 3-nitrotyrosine, and we characterize their spectral signatures using information obtained from quantum chemistry calculations and simulated EVV 2DIR spectra. To test the sensitivity of the technique, we use mixed-peptide samples containing various levels of tyrosine nitration, and we use mass spectrometry to independently verify the level of nitration. We conclude that EVV 2DIR spectroscopy is able to provide detailed spectroscopic information on peptide side-chain modifications and to detect nitration levels down to 1%. We further propose that lower nitration levels could be detected by introducing a resonant Raman probe step to increase the detection sensitivity of EVV 2DIR spectroscopy. (Graph Presented).
Resumo:
We demonstrate a simple method to experimentally evaluate nonlinear transmission performance of high order modulation formats using a low number of channels and channel-like ASE. We verify it's behaviour is consistent with the AWGN model of transmission.
Resumo:
The link between off-target anticholinergic effects of medications and acute cognitive impairment in older adults requires urgent investigation. We aimed to determine whether a relevant in vitro model may aid the identification of anticholinergic responses to drugs and the prediction of anticholinergic risk during polypharmacy. In this preliminary study we employed a co-culture of human-derived neurons and astrocytes (NT2.N/A) derived from the NT2 cell line. NT2.N/A cells possess much of the functionality of mature neurons and astrocytes, key cholinergic phenotypic markers and muscarinic acetylcholine receptors (mAChRs). The cholinergic response of NT2 astrocytes to the mAChR agonist oxotremorine was examined using the fluorescent dye fluo-4 to quantitate increases in intracellular calcium [Ca2+]i. Inhibition of this response by drugs classified as severe (dicycloverine, amitriptyline), moderate (cyclobenzaprine) and possible (cimetidine) on the Anticholinergic Cognitive Burden (ACB) scale, was examined after exposure to individual and pairs of compounds. Individually, dicycloverine had the most significant effect regarding inhibition of the astrocytic cholinergic response to oxotremorine, followed by amitriptyline then cyclobenzaprine and cimetidine, in agreement with the ACB scale. In combination, dicycloverine with cyclobenzaprine had the most significant effect, followed by dicycloverine with amitriptyline. The order of potency of the drugs in combination frequently disagreed with predicted ACB scores derived from summation of the individual drug scores, suggesting current scales may underestimate the effect of polypharmacy. Overall, this NT2.N/A model may be appropriate for further investigation of adverse anticholinergic effects of multiple medications, in order to inform clinical choices of suitable drug use in the elderly.
Resumo:
The natural selection of anticoagulant resistant rats has resulted in a need for an alternative to anticoagulant rodenticides which differs in both active ingredient and in the method of dosing. Cholecalciferol toxicity to rodents using the dermal route is demonstrated using a variety of penetration enhancing formulations in two in-vitro models and finally in-vivo. A 1 ml dose of 50/50 (v/v) DMSO/ethanol containing 15% (v/v) PEG 200 and 20% (w/v) cholecalciferol was judged as 'sufficiently effective' in line with the European Union's Biocidal Products Regulation (No. 528/2012) during in-vivo studies. This dose was found to cause 100% mortality in a rat population in 64.4 h (±22 h).
Resumo:
A theoretical model is developed to describe the propagation of ultra-short optical pulses in fiber transmission systems in the quasi-linear regime, with periodically inserted in-line lumped nonlinear optical devices. Stable autosoliton solutions are obtained for a particular application of the general theory.
Resumo:
This paper presents a novel approach to the computation of primitive geometrical structures, where no prior knowledge about the visual scene is available and a high level of noise is expected. We based our work on the grouping principles of proximity and similarity, of points and preliminary models. The former was realized using Minimum Spanning Trees (MST), on which we apply a stable alignment and goodness of fit criteria. As for the latter, we used spectral clustering of preliminary models. The algorithm can be generalized to various model fitting settings, without tuning of run parameters. Experiments demonstrate the significant improvement in the localization accuracy of models in plane, homography and motion segmentation examples. The efficiency of the algorithm is not dependent on fine tuning of run parameters like most others in the field.