33 resultados para Specific learning
Resumo:
This book examines the intricacies of the discourse of post-observation feedback that student teachers receive following group teaching practice. In particular, the author explores confirmatory feedback as an instigator of student teacher learning, and examines the potential links between feedback and change. The book will be of specific interest to researchers, teacher educators and other professionals involved in feedback-giving settings.
Resumo:
In common with most universities teaching electronic engineering in the UK, Aston University has seen a shift in the profile of its incoming students in recent years. The educational background of students has moved away from traditional Alevel maths and science and if anything this variation is set to increase with the introduction of engineering diplomas. Another major change to the circumstances of undergraduate students relates to the introduction of tuition fees in 1998 which has resulted in an increased likelihood of them working during term time. This may have resulted in students tending to concentrate on elements of the course that directly provide marks contributing to the degree classification. In the light of these factors a root and branch rethink of the electronic engineering degree programme structures at Aston was required. The factors taken into account during the course revision were:. Changes to the qualifications of incoming students. Changes to the background and experience of incoming students. Increase in overseas students, some with very limited practical experience. Student focus on work directly leading to marks. Modular compartmentalisation of knowledge. The need for provision of continuous feedback on performance We discuss these issues with specific reference to a 40 credit first year electronic engineering course and detail the new course structure and evaluate the effectiveness of the changes. The new approach appears to have been successful both educationally and with regards to student satisfaction. The first cohort of students from the new course will graduate in 2010 and results from student surveys relating particularly to project and design work will be presented at the conference. © 2009 K Sugden, D J Webb and R P Reeves.
Resumo:
Recommender system is a specific type of intelligent systems, which exploits historical user ratings on items and/or auxiliary information to make recommendations on items to the users. It plays a critical role in a wide range of online shopping, e-commercial services and social networking applications. Collaborative filtering (CF) is the most popular approaches used for recommender systems, but it suffers from complete cold start (CCS) problem where no rating record are available and incomplete cold start (ICS) problem where only a small number of rating records are available for some new items or users in the system. In this paper, we propose two recommendation models to solve the CCS and ICS problems for new items, which are based on a framework of tightly coupled CF approach and deep learning neural network. A specific deep neural network SADE is used to extract the content features of the items. The state of the art CF model, timeSVD++, which models and utilizes temporal dynamics of user preferences and item features, is modified to take the content features into prediction of ratings for cold start items. Extensive experiments on a large Netflix rating dataset of movies are performed, which show that our proposed recommendation models largely outperform the baseline models for rating prediction of cold start items. The two proposed recommendation models are also evaluated and compared on ICS items, and a flexible scheme of model retraining and switching is proposed to deal with the transition of items from cold start to non-cold start status. The experiment results on Netflix movie recommendation show the tight coupling of CF approach and deep learning neural network is feasible and very effective for cold start item recommendation. The design is general and can be applied to many other recommender systems for online shopping and social networking applications. The solution of cold start item problem can largely improve user experience and trust of recommender systems, and effectively promote cold start items.