59 resultados para Spatial pattern and association
Resumo:
In Alzheimer's disease (AD) brain, beta-amyloid (Abeta) deposits and neurofibrillary tangles (NFT) are not randomly distributed but exhibit a spatial pattern, i.e., a departure from randomness towards regularity or clustering. Studies of the spatial pattern of a lesion may contribute to an understanding of its pathogenesis and therefore, of AD itself. This article describes the statistical methods most commonly used to detect the spatial patterns of brain lesions and the types of spatial patterns exhibited by ß-amyloid deposits and NFT in the cerebral cortex in AD. These studies suggest that within the cerebral cortex, Abeta deposits and NFT exhibit a similar spatial pattern, i.e., an aggregation of individual lesions into clusters which are regularly distributed parallel to the pia mater. The location, size and distribution of these clusters supports the hypothesis that AD is a 'disconnection syndrome' in which degeneration of specific cortical pathways results in the formation of clusters of NFT and Abeta deposits. In addition, a model to explain the development of the pathology within the cerebral cortex is proposed.
Resumo:
A distinct feature of several recent models of contrast masking is that detecting mechanisms are divisively inhibited by a broadly tuned ‘gain pool’ of narrow-band spatial pattern mechanisms. The contrast gain control provided by this ‘cross-channel’ architecture achieves contrast normalisation of early pattern mechanisms, which is important for keeping them within the non-saturating part of their biological operating characteristic. These models superseded earlier ‘within-channel’ models, which had supposed that masking arose from direct stimulation of the detecting mechanism by the mask. To reveal the extent of masking, I measured the levels produced with large ranges of pattern spatial relationships that have not been explored before. Substantial interactions between channels tuned to different orientations and spatial frequencies were found. Differences in the masking levels produced with single and multiple component mask patterns provided insights into the summation rules within the gain pool. A widely used cross-channel masking model was tested on these data and was found to perform poorly. The model was developed and a version in which linear summation was allowed between all components within the gain pool but with the exception of the self-suppressing route typically provided the best account of the data. Subsequently, an adaptation paradigm was used to probe the processes underlying pooled responses in masking. This delivered less insight into the pooling than the other studies and areas were identified that require investigation for a new unifying model of masking and adaptation. In further experiments, levels of cross-channel masking were found to be greatly influenced by the spatio-temporal tuning of the channels involved. Old masking experiments and ideas relying on within-channel models were re-elevated in terms of contemporary cross-channel models (e.g. estimations of channel bandwidths from orientation masking functions) and this led to different conclusions than those originally arrived at. The investigation of effects with spatio-temporally superimposed patterns is focussed upon throughout this work, though it is shown how these enquiries might be extended to investigate effects across spatial and temporal position.
Resumo:
Cravo T. A., Becker B. and Gourlay A. Regional growth and SMEs in Brazil: a spatial panel approach, Regional Studies. This paper examines economic growth for a panel of 508 Brazilian micro-regions for the period 1980-2004, using spatial econometrics and paying particular attention to the importance of small and medium-sized enterprises (SMEs). The findings indicate the presence of spatial dependence in the process of economic growth and the existence of two spatial regimes in Brazil. The human capital level of the whole population is an important growth determinant, but does not generate positive spillovers. Furthermore, human capital embodied in SMEs is more important than the size of this sector for regional growth and SME activity generates positive spatial spillovers. © 2014 © 2014 Regional Studies Association.
Resumo:
Using magnetoencephalography, we studied the spatiotemporal properties of cortical responses in terms of event-related synchronization and event-related desynchronization to a range of stripe patterns in subjects with no neurological disorders. These stripes are known for their tendency to induce a range of abnormal sensations, such as illusions, nausea, dizziness, headache and attacks of pattern-sensitive epilepsy. The optimal stimulus must have specific physical properties, and maximum abnormalities occur at specific spatial frequency and contrast. Despite individual differences in the severity of discomfort experienced, psychophysical studies have shown that most observers experience some degree of visual anomaly on viewing such patterns. In a separate experiment, subjects reported the incidence of illusions and discomfort to each pattern. We found maximal cortical power in the gamma range (30-60 Hz) confined to the region of the primary visual cortex in response to patterns of 2-4 cycles per degree, peaking at 3 cycles per degree. This coincides with the peak of mean illusions and discomfort, also maximal for patterns of 2-4 cycles per degree. We show that gamma band activity in V1 is a narrow band function of spatial frequency. We hypothesize that the intrinsic properties of gamma oscillations may underlie visual discomfort and play a role in the onset of seizures.
Resumo:
Human object recognition is considered to be largely invariant to translation across the visual field. However, the origin of this invariance to positional changes has remained elusive, since numerous studies found that the ability to discriminate between visual patterns develops in a largely location-specific manner, with only a limited transfer to novel visual field positions. In order to reconcile these contradicting observations, we traced the acquisition of categories of unfamiliar grey-level patterns within an interleaved learning and testing paradigm that involved either the same or different retinal locations. Our results show that position invariance is an emergent property of category learning. Pattern categories acquired over several hours at a fixed location in either the peripheral or central visual field gradually become accessible at new locations without any position-specific feedback. Furthermore, categories of novel patterns presented in the left hemifield are distinctly faster learnt and better generalized to other locations than those learnt in the right hemifield. Our results suggest that during learning initially position-specific representations of categories based on spatial pattern structure become encoded in a relational, position-invariant format. Such representational shifts may provide a generic mechanism to achieve perceptual invariance in object recognition.
Resumo:
The development of abnormal protein aggregates in the form of extracellular plaques and intracellular inclusions is a characteristic feature of many neurodegenerative diseases such as Alzheimer's disease (AD), Creutzfeldt-Jakob disease (CJD) and the fronto-temporal dementias (FTD). An important aspect of a pathological protein aggregate is its spatial topography in the tissue. Lesions may not be randomly distributed within a histological section but exhibit spatial pattern, a departure from randomness either towards regularity or clustering. Information on the spatial pattern of a lesion may be useful in elucidating its pathogenesis and in studying the relationships between different lesions. This article reviews the methods that have been used to study the spatial topography of lesions. These include simple tests of whether the distribution of a lesion departs significantly from random using randomized points or sample fields, and more complex methods that employ grids or transects of contiguous fields and which can detect the intensity of aggregation and the sizes, distribution and spacing of the clusters. The usefulness of these methods in elucidating the pathogenesis of protein aggregates in neurodegenerative disease is discussed.
Resumo:
Discrete pathological lesions, which include extracellular protein deposits, intracellular inclusions and changes in cell morphology, occur in the brain in the majority of neurodegenerative disorders. These lesions are not randomly distributed in the brain but exhibit a spatial pattern, that is, a departure from randomness towards regularity or clustering. The spatial pattern of a lesion may reflect pathological processes affecting particular neuroanatomical structures and, therefore, studies of spatial pattern may help to elucidate the pathogenesis of a lesion and of the disorders themselves. The present article reviews first, the statistical methods used to detect spatial patterns and second, the types of spatial patterns exhibited by pathological lesions in a variety of disorders which include Alzheimer's disease, Down syndrome, dementia with Lewy bodies, Creutzfeldt-Jakob disease, Pick's disease and corticobasal degeneration. These studies suggest that despite the morphological and molecular diversity of brain lesions, they often exhibit a common type of spatial pattern (i.e. aggregation into clusters that are regularly distributed in the tissue). The pathogenic implications of spatial pattern analysis are discussed with reference to the individual disorders and to studies of neurodegeneration as a whole.
Resumo:
The spatial patterns of the prion protein (PrP) deposits were studied in immunostained sections of areas of the cerebral cortex, hippocampus, dentate gyrus, and the molecular layer of the cerebellum in 11 cases of variant Creutzfeldt-Jakob disease (vCJD). Clustering of PrP deposits, with a regular distribution of the clusters parallel to the tissue boundary, was the most common spatial pattern observed. Two morphological types of PrP deposit were recognised, those consisting of a condensed core (florid deposits) and those deposits lacking a condensed core (non-florid deposits). The florid and non-florid PrP deposits exhibited a different profile of spatial patterns. First, the florid deposits exhibited a regularly distributed pattern of clusters more frequently than the non-florid deposits. Second, the florid deposits formed larger clusters (greater than1,600 µm in diameter) less frequently than the non-florid deposits. In the areas of the cerebral cortex that exhibited a regular distribution of PrP deposit clusters, the cluster size of the deposits approximated that of the groups of cells of the cortico-cortical pathway origin in only 12% of analyses. No significant differences in the frequency of the different types of spatial pattern were observed in different brain regions, or in the cerebral cortex between the upper and lower laminae. It was concluded that the spatial patterns of the PrP deposits in the cerebral cortex in vCJD are unlikely to reflect the degeneration of the cortico-cortical pathways as has been reported in sporadic CJD (sCJD). In addition, different factors could be involved in the development of the deposits with and without a condensed core.
Resumo:
OBJECTIVE: To study the spatial patterns of the vacuolation ("spongiform change") in the subcortical white matter in the "classical" form of sporadic Creutzfeldt-Jakob disease (sCJD). MATERIAL: Frontal, parietal, occipital and temporal lobes of 11 cases of sCJD. METHOD: Spatial patterns were studied across the white matter at the base of the gyri using spatial pattern analysis. RESULTS: In the white matter of all gyri studied, vacuoles were aggregated into clusters, 50 to > 800 microm in diameter and in 22/37 (59%) of gyri, the clusters of vacuoles exhibited a regular distribution across the base of the gyri. In the remaining gyri, the vacuoles were aggregated into large clusters, at least 400 microm or 800 microm in diameter, but without evidence of a regular distribution. In a significant proportion of gyri, the spatial patterns of the vacuolation were similar to those reported previously for spongiform change and prion protein (PrP) deposits in the corresponding grey matter. CONCLUSIONS: Degeneration of the white matter and the formation of clusters of vacuoles may occur before the degeneration of the grey matter or could be a consequence of pathology affecting the cortico-cortical pathways.
Resumo:
Over the last ten years our understanding of early spatial vision has improved enormously. The long-standing model of probability summation amongst multiple independent mechanisms with static output nonlinearities responsible for masking is obsolete. It has been replaced by a much more complex network of additive, suppressive, and facilitatory interactions and nonlinearities across eyes, area, spatial frequency, and orientation that extend well beyond the classical recep-tive field (CRF). A review of a substantial body of psychophysical work performed by ourselves (20 papers), and others, leads us to the following tentative account of the processing path for signal contrast. The first suppression stage is monocular, isotropic, non-adaptable, accelerates with RMS contrast, most potent for low spatial and high temporal frequencies, and extends slightly beyond the CRF. Second and third stages of suppression are difficult to disentangle but are possibly pre- and post-binocular summation, and involve components that are scale invariant, isotropic, anisotropic, chromatic, achromatic, adaptable, interocular, substantially larger than the CRF, and saturated by contrast. The monocular excitatory pathways begin with half-wave rectification, followed by a preliminary stage of half-binocular summation, a square-law transducer, full binocular summation, pooling over phase, cross-mechanism facilitatory interactions, additive noise, linear summation over area, and a slightly uncertain decision-maker. The purpose of each of these interactions is far from clear, but the system benefits from area and binocular summation of weak contrast signals as well as area and ocularity invariances above threshold (a herd of zebras doesn't change its contrast when it increases in number or when you close one eye). One of many remaining challenges is to determine the stage or stages of spatial tuning in the excitatory pathway.
Resumo:
A well-known property of orientation-tuned neurons in the visual cortex is that they are suppressed by the superposition of an orthogonal mask. This phenomenon has been explained in terms of physiological constraints (synaptic depression), engineering solutions for components with poor dynamic range (contrast normalization) and fundamental coding strategies for natural images (redundancy reduction). A common but often tacit assumption is that the suppressive process is equally potent at different spatial and temporal scales of analysis. To determine whether it is so, we measured psychophysical cross-orientation masking (XOM) functions for flickering horizontal Gabor stimuli over wide ranges of spatio-temporal frequency and contrast. We found that orthogonal masks raised contrast detection thresholds substantially at low spatial frequencies and high temporal frequencies (high speeds), and that small and unexpected levels of facilitation were evident elsewhere. The data were well fit by a functional model of contrast gain control, where (i) the weight of suppression increased with the ratio of temporal to spatial frequency and (ii) the weight of facilitatory modulation was the same for all conditions, but outcompeted by suppression at higher contrasts. These results (i) provide new constraints for models of primary visual cortex, (ii) associate XOM and facilitation with the transient magno- and sustained parvostreams, respectively, and (iii) reconcile earlier conflicting psychophysical reports on XOM.
Resumo:
In human vision, the response to luminance contrast at each small region in the image is controlled by a more global process where suppressive signals are pooled over spatial frequency and orientation bands. But what rules govern summation among stimulus components within the suppressive pool? We addressed this question by extending a pedestal plus pattern mask paradigm to use a stimulus with up to three mask components: a vertical 1 c/deg pedestal, plus pattern masks made from either a grating (orientation = -45°) or a plaid (orientation = ±45°), with component spatial frequency of 3 c/deg. The overall contrast of both types of pattern mask was fixed at 20% (i.e., plaid component contrasts were 10%). We found that both of these masks transformed conventional dipper functions (threshold vs. pedestal contrast with no pattern mask) in exactly the same way: The dipper region was raised and shifted to the right, but the dipper handles superimposed. This equivalence of the two pattern masks indicates that contrast summation between the plaid components was perfectly linear prior to the masking stage. Furthermore, the pattern masks did not drive the detecting mechanism above its detection threshold because they did not abolish facilitation by the pedestal (Foley, 1994). Therefore, the pattern masking could not be attributed to within-channel masking, suggesting that linear summation of contrast signals takes place within a suppressive contrast gain pool. We present a quantitative model of the effects and discuss the implications for neurophysiological models of the process. © 2004 ARVO.
Resumo:
Masking is said to occur when a mask stimulus interferes with the visibility of a target (test) stimulus. One widely held view of this process supposes interactions between mask and test mechanisms (cross-channel masking), and explicit models (e.g., J. M. Foley, 1994) have proposed that the interactions are inhibitory. Unlike a within-channel model, where masking involves the combination of mask and test stimulus within a single mechanism, this cross-channel inhibitory model predicts that the mask should attenuate the perceived contrast of a test stimulus. Another possibility is that masking is due to an increase in noise, in which case, perception of contrast should be unaffected once the signal exceeds detection threshold. We use circular patches and annuli of sine-wave grating in contrast detection and contrast matching experiments to test these hypotheses and investigate interactions across spatial frequency, orientation, field position, and eye of origin. In both types of experiments we found substantial effects of masking that can occur over a factor of 3 in spatial frequency, 45° in orientation, across different field positions and between different eyes. We found the effects to be greatest at the lowest test spatial frequency we used (0.46 c/deg), and when the mask and test differed in all four dimensions simultaneously. This is surprising in light of previous work where it was concluded that suppression from the surround was strictly monocular (C. Chubb, G. Sperling, & J. A. Solomon, 1989). The results confirm that above detection threshold, cross-channel masking involves contrast suppression and not (purely) mask-induced noise. We conclude that cross-channel masking can be a powerful phenomenon, particularly at low test spatial frequencies and when mask and test are presented to different eyes. © 2004 ARVO.
Resumo:
A method of determining the spatial pattern of any histological feature in sections of brain tissue which can be measured quantitatively is described and compared with a previously described method. A measurement of a histological feature such as density, area, amount or load is obtained for a series of contiguous sample fields. The regression coefficient (β) is calculated from the measurements taken in pairs, first in pairs of adjacent samples and then in pairs of samples taken at increasing degrees of separation between them, i.e. separated by 2, 3, 4,..., n units. A plot of β versus the degree of separation between the pairs of sample fields reveals whether the histological feature is distributed randomly, uniformly or in clusters. If the feature is clustered, the analysis determines whether the clusters are randomly or regularly distributed, the mean size of the clusters and the spacing of the clusters. The method is simple to apply and interpret and is illustrated using simulated data and studies of the spatial patterns of blood vessels in the cerebral cortex of normal brain, the degree of vacuolation of the cortex in patients with Creutzfeldt-Jacob disease (CJD) and the characteristic lesions present in Alzheimer's disease (AD). Copyright (C) 2000 Elsevier Science B.V.
Resumo:
A method is described which enables the spatial pattern of discrete objects in histological sections of brain tissue to be determined. The method can be applied to cell bodies, sections of blood vessels or the characteristic lesions which develop in the brain of patients with neurodegenerative disorders. The density of the histological feature under study is measured in a series of contiguous sample fields arranged in a grid or transect. Data from adjacent sample fields are added together to provide density data for larger field sizes. A plot of the variance/mean ratio (V/M) of the data versus field size reveals whether the objects are distributed randomly, uniformly or in clusters. If the objects are clustered, the analysis determines whether the clusters are randomly or regularly distributed and the mean size of the clusters. In addition, if two different histological features are clustered, the analysis can determine whether their clusters are in phase, out of phase or unrelated to each other. To illustrate the method, the spatial patterns of senile plaques and neurofibrillary tangles were studied in histological sections of brain tissue from patients with Alzheimer's disease.