57 resultados para Septum of Brain
Resumo:
We contend that powerful group studies can be conducted using magnetoencephalography (MEG), which can provide useful insights into the approximate distribution of the neural activity detected with MEG without requiring magnetic resonance imaging (MRI) for each participant. Instead, a participant's MRI is approximated with one chosen as a best match on the basis of the scalp surface from a database of available MRIs. Because large inter-individual variability in sulcal and gyral patterns is an inherent source of blurring in studies using grouped functional activity, the additional error introduced by this approximation procedure has little effect on the group results, and offers a sufficiently close approximation to that of the participants to yield a good indication of the true distribution of the grouped neural activity. T1-weighted MRIs of 28 adults were acquired in a variety of MR systems. An artificial functional image was prepared for each person in which eight 5 × 5 × 5 mm regions of brain activation were simulated. Spatial normalisation was applied to each image using transformations calculated using SPM99 with (1) the participant's actual MRI, and (2) the best matched MRI substituted from those of the other 27 participants. The distribution of distances between the locations of points using real and substituted MRIs had a modal value of 6 mm with 90% of cases falling below 12.5 mm. The effects of this -approach on real grouped SAM source imaging of MEG data in a verbal fluency task are also shown. The distribution of MEG activity in the estimated average response is very similar to that produced when using the real MRIs. © 2003 Wiley-Liss, Inc.
Resumo:
A Principal Components Analysis of neuropathological data from 79 Alzheimer’s disease (AD) cases was performed to determine whether there was evidence for subtypes of the disease. Two principal components were extracted from the data which accounted for 72% and 12% of the total variance respectively. The results suggested that 1) AD was heterogeneous but subtypes could not be clearly defined; 2) the heterogeneity, in part, reflected disease onset; 3) familial cases did not constitute a distinct subtype of AD and 4) there were two forms of late onset AD, one of which was associated with less senile plaque and neurofibrillary tangle development but with a greater degree of brain atherosclerosis.
Resumo:
The spatial patterns of senile plaques (SP) and neurofibrillary tangles (NFT) as visualised using the Gallyas stain and of discrete A4 protein deposits were determined in coronal serial sections from a variety of brain regions in six elderly patients with Alzheimer's disease (AD). These lesions showed clustering in virtually all tissues examined with many of the clusters being regularly spaced. These spatial patterns were compared with the clustering observed for SP and NFT stained by the Glees and Marsland method in the same tissues. The data suggest that on average, while the regular clusters of A4 deposits and NFT were of approximately the same mean diameter (3600 microns), clusters of both Glees and Gallyas SP were approximately half this diameter (1800 - 2000 microns). If SP develop in local areas of the brain where both A4 deposition and neurofibrillary changes have occurred, the data suggest that the SP clusters would represent the region of overlap of the A4 deposits and neurofibrillary changes. Various hypothese are advocated to explain the regular clsuetring of the A4 deposits.
Resumo:
Lesions in Alzheimer's disease (AD) and dementia with Lewy bodies (DLB) have distinct laminar distributions in the cortex. The objective of the present study was to test the hypothesis that the lesions characteristic of Pick's disease (PD) and AD have distinctly different laminar distributions in cases of PD. Hence, the laminar distribution of Pick bodies (PB), Pick cells (PC), senile plaques (SP) and neurofibrillary tangles (NFT) was studied in the frontal and temporal cortex in nine patients with PD. In 57% of analyses of individual cortical areas, the density of PB was maximal in the upper cortex while in 25% of analyses, the distribution of PB was bimodal with density peaks in the upper and lower cortex. The density of PC was maximal in the lower cortex in 77% of analyses while a bimodal distribution was present in 5% of analyses. The density of NFT was maximal in the upper cortex in 50% of analyses, in the lower cortex in 15% of analyses, with a bimodal distribution in 4% of analyses. The density of SP did not vary significantly with cortical depth in 86% of analyses. The vertical densities of PB and PC were negatively correlated in 12/21 (57%) of brain areas. The maximum density of PB in the upper cortex was positively correlated with the maximum density of PC in the lower cortex. In 17/25 (68%) of brain areas, there was no significant correlation between the vertical densities of PB and NFT. The data suggest that the pathogenesis of PB may be related to that of the PC. In addition, although in many areas PB and NFT occur predominantly in the upper cortex, the two lesions appeared to affect different neuronal populations.
Resumo:
Clustering of ballooned neurons (BN) and tau positive neurons with inclusion bodies (tau+ neurons) was studied in the upper and lower laminae of the frontal, parietal and temporal cortex in 12 patients with corticobasal degeneration (CBD). In a significant proportion of brain areas examined, BN and tau+ neurons exhibited clustering with a regular distribution of clusters parallel to the pia mater. A regular pattern of clustering of BN and tau+ neurons was observed equally frequently in all cortical areas examined and in the upper and lower laminae. No significant correlations were observed between the cluster sizes of BN or tau+ neurons in the upper compared with the lower cortex or between the cluster sizes of BN and tau+ neurons. The results suggest that BN and tau+ neurons in CBD exhibit the same type of spatial pattern as lesions in Alzheimer's disease, Lewy body dementia and Pick's disease. The regular periodicity of the cerebral cortical lesions is consistent with the degeneration of the cortico-cortical projections in CBD.
Resumo:
The spatial patterns of Lewy bodies (LB), senile plaques (SP), and neurofibrillary tangles (NFT) were studied in ubiquitin-stained sections of the temporal lobe in cases of dementia with Lewy bodies (DLB), which varied in the degree of associated Alzheimer's disease (AD) pathology. In all patients, LB, SP, and NFT developed in clusters and in a significant proportion of brain areas, the clusters exhibited a regular periodicity parallel to the tissue boundary. In the lateral occipitotemporal gyrus (LOT) and parahippocampal gyrus (PHG), the clusters of LB were larger than those of the SP and NFT but in the hippocampus, clusters of the three lesions were of similar size. Mean cluster size of the LB, SP, and NFT was similar in cases of DLB with and without significant associated AD pathology. LB density was positively correlated with SP and NFT density in 42 and 17% of brain areas analyzed, respectively, while SP and NFT densities were positively correlated in 7% of brain areas. The data suggest that LB in DLB exhibit similar spatial patterns to SP and NFT in AD and that SP and NFT exhibit similar spatial patterns in DLB and AD. In addition, in some instances, clusters of LB appeared to be more closely related spatially to the clusters of SP than to NFT.
Resumo:
The spatial pattern of cellular neurofibrillary tangles (NFT) was studied in the supra- and infragranular layers of various cortical regions in cases of Alzheimer's disease (AD). The objective was to test the hypothesis that NFT formation was associated with the cells of origin of specific cortico-cortical projections. The novel feature of the study was that pattern analysis enabled the dimension and spacing of NFT clusters along the cortical ribbon to be estimated. In the majority of brain regions studied, NFT occurred in clusters of neurons which were regularly spaced along the cortical strip. This pattern is consistent with the predicted distribution of the cells of origin of specific cortico-cortico projections. Mean NFT cluster size varied from 250 to > 12800 microns in different cortical tissues suggesting either variation in the size of the cell clusters or a dynamic process in the development of NFT in relation to these cell clusters. The formation of NFT in cell clusters which may give rise to the feed-forward and feed-back cortico-cortical projections suggests a possible route of spread of NFT pathology in AD between cortical regions and from the cortex to subcortical areas.
Resumo:
The laminar distribution of ballooned neurons (BN) and tau positive neurons with inclusions (tau+ neurons) was studied in the frontal and temporal cortex in twelve patients with corticobasal degeneration (CBD). In the majority of brain areas, the density of BN and tau+ neurons was maximal in the lower and upper cortical laminae respectively. The densities of tau+ neurons in the upper and lower cortex were positively correlated. In the majority of brain areas, however, no correlations were observed between the densities of BN and tau+ neurons. The laminar distribution of the BN may reflect the degeneration of the feedback cortico-cortical and/or the efferent cortical pathways. By contrast, the distribution of the tau+ neurons may reflect the degeneration of the feed-forward cortico-cortical pathways. In addition, BN and tau+ neurons may arise as a result of distinct pathological processes.
Resumo:
Clustering of cellular neurofibrillary tangles (NFT) was studied in the cerebral cortex and hippocampus in cases of Alzheimer’s disease (AD) using a regression method. The objective of the study was to test the hypothesis that clustering of NFTs reflects the degeneration of the cortico-cortical pathways. In 25/38 (66%) of analyses of individual brain areas, a significant peak to trough and peak to peak distance was obtained suggesting that the clusters of NFTs were regularly distributed in bands parallel to the tissue boundary. In analyses of cortical tissues with regularly distributed clusters, peak to peak distance was between 1000 and 1600 microns in 13/24 (54%) of analyses, >1600 microns in 10/24 (42%) and <1000 microns in 1/24 (4%) of analyses. A regular distribution of NFT clusters was less evident in the CA sectors of the hippocampus than in the cortex. Hence, in a significant proportion of brain areas, the spacing of NFT clusters along the cerebral cortex was consistent with the predicted distribution of the cells of origin of specific cortico-cortical projections. However, in many brain regions, the sizes of the NFT clusters were larger than predicted which may be attributable to the spread of NFTs to adjacent groups of cells as the disease progresses.
Resumo:
The spatial patterns of Pick bodies (PB), Pick cells (PC), senile plaques (SP) and neurofibrillary tangles (NFT) were studied in the frontal and temporal lobe in nine cases of Pick’s disease (PD). Pick bodies exhibited clustering in 41/44 (93%) of analyses and clusters of PB were regularly distributed parallel to the tissue boundary in 24/41 (58%) of analyses. Pick cells exhibited clustering with regular periodicity of clusters in 14/16 (88%) analyses, SP in three out of four (75%) analyses and NFT in 21/27 (78%) analyses. The largest clusters of PB were observed in the dentate gyrus and PC in the frontal cortex. In 10/17 (59%) brain areas studied, a positive or negative correlation was observed between the densities of PB and PC. The densities of PB and NFT were not significantly correlated in the majority of brain areas but a negative correlation was observed in 7/29 (24%) brain areas. The data suggest that PB and PC in patients with PD exhibit essentially the same spatial patterns as SP and NFT in Alzheimer’s disease (AD) and Lewy bodies (LB) in dementia with Lewy bodies (DLB). In addition, there was a spatial correlation between the clusters of PB and PC, suggesting a pathogenic relationship between the two lesions. However, in the majority of tissues examined there was no spatial correlation between the clusters of PB and NFT, suggesting that the two lesions develop in association with different populations of neurons.
Resumo:
Discrete, microscopic lesions are developed in the brain in a number of neurodegenerative diseases. These lesions may not be randomly distributed in the tissue but exhibit a spatial pattern, i.e., a departure from randomness towards regularlity or clustering. The spatial pattern of a lesion may reflect its development in relation to other brain lesions or to neuroanatomical structures. Hence, a study of spatial pattern may help to elucidate the pathogenesis of a lesion. A number of statistical methods can be used to study the spatial patterns of brain lesions. They range from simple tests of whether the distribution of a lesion departs from random to more complex methods which can detect clustering and the size, distribution and spacing of clusters. This paper reviews the uses and limitations of these methods as applied to neurodegenerative disorders, and in particular to senile plaque formation in Alzheimer's disease.
Resumo:
Different visual stimuli may activate separate channels in the visual system and produce magnetic responses from the human bran which originate from distinct regions of the visual cortex. To test this hypothesis, we have investigated the distribution of visual evoked magnetic responses to three distinct visual stimuli over the occipital region of the scalp with a DC-SQUID second-order gradiometer in an ubshielded environment. Patterned stimuli were presented full field and to the right half field, while a flash stimulus was presented full field only, in five normal subjects. Magnetic responses were recorded from 20 to 42 positions over the occipital scalp. Topographic maps were prepared of the major positive component within the first 150ms to the three stimuli, i.e., the P100m (pattern shift), C11m (pattern onset) and P2m (flash). For the pattern shift stimulus the data suggested the source of the P100m was close to the midline with the current directed towards the medial surface. The data for the pattern onset C11m suggested a source at a similar depth but with the current directed away from the midline towards the lateral surface. The flash P2m appeared to originate closer to the surface of the occipital pole than both the patterned stimuli. Hence the pattern shift (which may represent movement), and the pattern onset C11m (representing contrast and contour) appear to originate in similar areas of brain but to represent different asepcts of cortical processing. By contrast, the flash P2m (representing luminance change) appears to originate in a distinct area of visual cortex closer to the occipital pole.
Resumo:
A principal components analysis was carried out on neuropathological data collected from 79 cases of Alzheimer's disease (AD) diagnosed in a single centre. The purpose of the study was to determine whether on neuropathological criteria there was evidence for clearly defined subtypes of the disease. Two principal components (PC1 and PC2) were extracted from the data. PC1 was considerable more important than PC2 accounting for 72% of the total variance. When plotted in relation to the first two principal components the majority of cases (65/79) were distributed in a single cluster within which subgroupings were not clearly evident. In addition, there were a number of individual, mainly early-onset cases, which were neither related to each other nor to the main cluster. The distribution of each neuropathological feature was examined in relation to PC1 and 2, Disease onset, rhe degree of gross brain atrophy, neuronal loss and the devlopment of senile plaques (SP) and neurofibrillary tangles (NFT) were negatively correlated with PC1. The devlopment of SP and NFT and the degree of brain athersclerosis were positively correlated with PC2. These results suggested: 1) that there were different forms of AD but no clear division of the cases into subclasses could be made based on the neuropathological criteria used; the cases showing a more continuous distribution from one form to another, 2) that disease onset was an important variable and was associated with a greater development of pathological changes, 3) familial cases were not a distinct subclass of AD; the cases being widely distributed in relation to PC1 and PC2 and 4) that there may be two forms of late-onset AD whic grade into each other, one of which was associated with less SP and NFT development but with a greater degree of brain atherosclerosis.
Resumo:
In variant Creutzfeldt-Jakob disease (vCJD), a disease linked to bovine spongiform encephalopathy (BSE), florid-type prion protein (PrP(sc)) deposits are aggregated around the larger diameter (> 10 µm) cerebral microvessels. Clustering of PrP(sc) deposits around blood vessels may result from blood-borne prions or be a consequence of the cerebral vasculature influencing the development of the florid deposits. To clarify the factors involved, the dispersion of the florid PrP(sc) deposits was studied around the larger diameter microvessels in the neocortex, hippocampus, and cerebellum of ten cases of vCJD. In the majority of brain regions, florid deposits were clustered around the larger diameter vessels with a mean cluster size of between 50 µm and 628 µm. With the exception of the molecular layer of the dentate gyrus, the density of the florid deposits declined as a negative exponential function of distance from a blood vessel profile suggesting that diffusion of molecules from blood vessels is a factor in the formation of the florid deposits. Diffusion of PrP(sc) directly into the brain via the microvasculature has been demonstrated in vCJD in a small number of cases. However, the distribution of the prion deposits in vCJD is more likely to reflect molecular 'chaperones' diffusing from vessels and promoting the aggregation of pre-existing PrP(sc) in the vicinity of the vessels to form florid deposits.
Resumo:
Feeding behaviour of trained rainbow trout was investigated by the use of demand feeders, under different light conditions. The effects of the energy content of diet, and the size, colour and texture of feed pellets, on the feeding behaviour, were studied. An attempt was made to locate the assumed centres for feeding and satiety in the hypothalamus of brain by the intraperitoneal injections of goldthioglucose. Feeding under nine different constant photoperiods at 160 lux, at a temperature of 13.5°C, showed that trout exhibit a rhythmic pattern of feeding behaviour in all photoperiods except in continuous darkness.Feeding rhythms of trout attributable to the degree of gut distension were formed every eight to ten hours. Further studies by varying levels of light intensity revealed the interaction of light intensity and photoperiod. At shorter photoperiods lower levels of light intensity decreased the feeding activity in terms of food intake but by increasing the photoperiod the same feeding activity was accomplished as by the fish subject to a short photoperiod but under higher light intensity.Simulated effect of increasing and decreasing daylengths did not affect the overall food intake and growth performance. Trout are quite efficient in adjusting their food intake in terms of energy content. Colour, size and texture of feed pellets affect the feeding responses and elicit preferential food selection behaviour in trout. Goldthioglucose induced some reversable toxic effects upon general physiology of trout and did not produce any lesions in the assumed areas of feeding and satiety centres in the brain. It was concluded that the feeding behaviour of trout exhibited selective preferences according to the physical nature of food items and those preferences could be further influenced by the biotic and abiotic factors, light being one of the most important abiotic factors.