64 resultados para SYNTHETIC PHOSPHOLIPIDS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

At present there is no standard assessment method for rating and comparing the quality of synthesized speech. This study assesses the suitability of Time Frequency Warping (TFW) modulation for use as a reference device for assessing synthesized speech. Time Frequency Warping modulation introduces timing errors into natural speech that produce perceptual errors similar to those found in synthetic speech. It is proposed that TFW modulation used in conjunction with a listening effort test would provide a standard assessment method for rating the quality of synthesized speech. This study identifies the most suitable TFW modulation variable parameter to be used for assessing synthetic speech and assess the results of several assessment tests that rate examples of synthesized speech in terms of the TFW variable parameter and listening effort. The study also attempts to identify the attributes of speech that differentiate synthetic, TFW modulated and natural speech.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Published data indicate that the polar lipid content of human meibomian gland secretions (MGS) could be anything between 0.5% and 13% of the total lipid. The tear film phospholipid composition has not been studied in great detail and it has been understood that the relative proportions of lipids in MGS would be maintained in the tear film. The purpose of this work was to determine the concentration of phospholipids in the human tear film. Methods: Liquid chromatography mass spectrometry (LCMS) and thin layer chromatography (TLC) were used to determine the concentration of phospholipid in the tear film. Additionally, an Amplex Red phosphatidylcholine-specific phospholipase C (PLC) assay kit was used for determination of the activity of PLC in the tear film. Results: Phospholipids were not detected in any of the tested human tear samples with the low limit of detection being 1.3 µg/mL for TLC and 4 µg/mL for liquid chromatography mass spectrometry. TLC indicated that diacylglycerol (DAG) may be present in the tear film. PLC was in the tear film with an activity determined at approximately 15 mU/mL, equivalent to the removal of head groups from phosphatidylcholine at a rate of approximately 15 µM/min. Conclusions: This work shows that phospholipid was not detected in any of the tested human tear samples (above the lower limits of detection as described) and suggests the presence of DAG in the tear film. DAG is known to be at low concentrations in MGS. These observations indicate that PLC may play a role in modulating the tear film phospholipid concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteo-odonto-keratoprostheses (OOKP) is a unique form of keratoprosthesis involving surgical removal of a tooth root and surrounding bone from the patient which are then used to construct an osteo-odonto lamina into which an optical cylinder is cemented. The OOKP procedure is successful and capable of withstanding the very hostile ocular environments found in severe Stevens–Johnson syndrome, pemphigoid, chemical burns, trachoma and multiple corneal graft failure. The existing procedure is complex and time consuming in terms of operative time, and additionally involves sacrifice of the oral structures. This paper discusses the rational search for a “synthetic” analogue of the dental lamina, capable of mimicking those features of the natural system that are responsible for the success of OOKP. In this study the degradation of selected commercial and natural bioceramics was tested in vitro using a purpose-designed resorption assay. Degradation rate was compared with tooth and bone, which are currently used in OOKP lamina. At normal physiological pH the degradation of bioceramics was equivalent to tooth and bone; however, at pH 6.5–5.0, associated with infectious and inflamed tissues, the bioceramics degrade more rapidly. At lower pH the degradation rate decreased in the following order: calcium carbonate corals > biphasic calcium phosphates > hydroxyapatite. Porosity did not significantly influence these degradation rates. Such degradation is likely to compromise the stability and viability of the synthetic OOKP. Consequently more chemically stable materials are required that are optimized for the surrounding ocular environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxidized phospholipids, such as the products of the oxidation of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine by nonenzymatic radical attack, are known to be formed in a number of inflammatory diseases. Interest in the bioactivity and signaling functions of these compounds has increased enormously, with many studies using cultured immortalized and primary cells, tissues, and animals to understand their roles in disease pathology. Initially, oxidized phospholipids were viewed largely as culprits, in line with observations that they have proinflammatory effects, enhancing inflammatory cytokine production, cell adhesion and migration, proliferation, apoptosis, and necrosis, especially in vascular endothelial cells, macrophages, and smooth muscle cells. However, evidence has emerged that these compounds also have protective effects in some situations and cell types; a notable example is their ability to interfere with signaling by certain Toll-like receptors (TLRs) induced by microbial products that normally leads to inflammation. They also have protective effects via the stimulation of small GTPases and induce up-regulation of antioxidant enzymes and cytoskeletal rearrangements that improve endothelial barrier function. Oxidized phospholipids interact with several cellular receptors, including scavenger receptors, platelet-activating factor receptors, peroxisome proliferator-activated receptors, and TLRs. The various and sometimes contradictory effects that have been observed for oxidized phospholipids depend on their concentration, their specific structure, and the cell type investigated. Nevertheless, the underlying molecular mechanisms by which oxidized phospholipids exert their effects in various pathologies are similar. Although our understanding of the actions and mechanisms of these mediators has advanced substantially, many questions do remain about their precise interactions with components of cell signaling pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The generation of reactive oxygen species is a central feature of inflammation that results in the oxidation of host phospholipids. Oxidized phospholipids, such as 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine (OxPAPC), have been shown to inhibit signaling induced by bacterial lipopeptide or lipopolysac-charide (LPS), yet the mechanisms responsible for the inhibition of Toll-like receptor (TLR) signaling by OxPAPC remain incompletely understood. Here, we examined the mechanisms by which OxPAPC inhibits TLR signaling induced by diverse ligands in macrophages, smooth muscle cells, and epithelial cells. OxPAPC inhibited tumor necrosis factor- production, IB degradation, p38 MAPK phosphorylation, and NF-B-dependent reporter activation induced by stimulants of TLR2 and TLR4 (Pam3CSK4 and LPS) but not by stimulants of other TLRs (poly(I·C), flagellin, loxoribine, single-stranded RNA, or CpG DNA) in macrophages and HEK-293 cells transfected with respective TLRs and significantly reduced inflammatory responses in mice injected subcutaneously or intraperitoneally with Pam3CSK4. Serum proteins, including CD14 and LPS-binding protein, were identified as key targets for the specificity of TLR inhibition as supplementation with excess serum or recombinant CD14 or LBP reversed TLR2 inhibition by OxPAPC, whereas serum accessory proteins or expression of membrane CD14 potentiated signaling via TLR2 and TLR4 but not other TLRs. Binding experiments and functional assays identified MD2 as a novel additional target of OxPAPC inhibition of LPS signaling. Synthetic phospholipid oxidation products 1-palmitoyl-2-(5-oxovaleryl)-sn-glycero-3-phosphocholine and 1-palmitoyl-2-glutaryl-sn-glycero-3-phosphocholine inhibited TLR2 signaling from 30 µM. Taken together, these results suggest that oxidized phospholipid-mediated inhibition of TLR signaling occurs mainly by competitive interaction with accessory proteins that interact directly with bacterial lipids to promote signaling via TLR2 or TLR4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Lipids play a vital role at interfaces such as the tear film in the protection of the anterior eye. Their role is to act as lubricants and reduce surface and interfacial tension. Although there is a lack of appropriate methods to solubilize and dilute phospholipids to the tear film. Here, we report that styrene-maleic acid copolymers (PSMA), can form polymer–lipid complexes in the form of monodisperse nanometric particles, which can easily solubilise these phospholipid molecules by avoiding for example, the use of any kind of surfactant. Method: The interactions of PSMA with phospholipids have been studied by its adsorption from aqueous solutions into monolayers of dimyristoyl-phosphorylcholine (DMPC). The Langmuir trough (LT) technique is used to study this pH-dependant complex formation. The formed nanoparticles have been also analysed by 31P NMR, particle size distribution by light scattering (DLS) and morphology by electron microscopy (SEM). Results: The LT has been found to be a useful technique for in vitro simulation of in vivo lipid layer behaviour: The limiting surface pressure of unstable tear films ranges between 20 and 30 mN/m. More stable tear films show an increase in surface pressure, within the range of 35–45 mN/m. The DMPC monolayers have a limiting surface pressure of 38 mN/m (water), and 45 mN/m (pH 4 buffer), and the PSMA-DMPC complexes formed at pH 4 have a value of 42 mN/m, which resembles that of the stable tear film. The average particle size distribution is 53 ± 10 nm with a low polydispersity index (PDI) of 0.24 ± 0.03. Conclusions: New biocompatible and cheap lipid solubilising agents such as PSMA can be used for the study of the tear film composition and properties. These polymer–lipid complexes in the form of nanoparticles can be used to solubilise and release in a controlled way other hydrophobic molecules such as some drugs or proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The major challenge of MEG, the inverse problem, is to estimate the very weak primary neuronal currents from the measurements of extracranial magnetic fields. The non-uniqueness of this inverse solution is compounded by the fact that MEG signals contain large environmental and physiological noise that further complicates the problem. In this paper, we evaluate the effectiveness of magnetic noise cancellation by synthetic gradiometers and the beamformer analysis method of synthetic aperture magnetometry (SAM) for source localisation in the presence of large stimulus-generated noise. We demonstrate that activation of primary somatosensory cortex can be accurately identified using SAM despite the presence of significant stimulus-related magnetic interference. This interference was generated by a contact heat evoked potential stimulator (CHEPS), recently developed for thermal pain research, but which to date has not been used in a MEG environment. We also show that in a reduced shielding environment the use of higher order synthetic gradiometry is sufficient to obtain signal-to-noise ratios (SNRs) that allow for accurate localisation of cortical sensory function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Incorporation of the glycolipid trehalose 6,6′-dibehenate (TDB) into cationic liposomes composed of the quaternary ammonium compound dimethyldioctadecylammonium (DDA) produce an adjuvant system which induces a powerful cell-mediated immune response and a strong antibody response, desirable for a high number of disease targets. We have used differential scanning calorimetry (DSC) to investigate the effect of TDB on the gel-fluid phase transition of DDA liposomes and to demonstrate that TDB is incorporated into DDA liposome bilayers. Transmission Electron Microscopy (TEM) and cryo-TEM confirmed that liposomes were formed when a lipid film of DDA containing small amounts of TDB was hydrated in an aqueous buffer solution at physiological pH. Furthermore, time development of particle size and zeta potential of DDA liposomes incorporating TDB during storage at 4°C and 25°C, indicates that TDB effectively stabilizes the DDA liposomes. Immunization of mice with the mycobacterial fusion protein Ag85B-ESAT-6 in DDA-TDB liposomes induced a strong, specific Th1 type immune response characterized by substantial production of the interferon-γ cytokine and high levels of IgG2b isotype antibodies. The lymphocyte subset releasing the interferon-γ was identified as CD4 T cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipids are a highly diverse class of biomolecules, with an average eukaryotic cell estimated as containing at least 100,000 different species. The significance of this diversity is still poorly understood, yet it has become clear that lipids have critical regulatory as well as structural roles, varying from signaling (e.g. phosphatidylinositols, prostaglandins, platelet activating factor, ceramide) to the control of permeability properties of skin, for instance. An unprecedented discovery from recent efforts in lipidomics, aimed at the elucidation of the functional roles of lipids in cells, was the key role for lipid oxidation in cell behavior and pathology. More specifically, oxidized phospholipids (oxPL) have been shown to increase significantly in apoptosis as well as in inflammation and to be involved in several pathological conditions, such as atherosclerosis, cancer, inflammation, Alzheimer's and Parkinson's disease, as well as type 2 diabetes, with the detailed mechanisms remaining to be established. However, a coherent overall view of the causalities and mechanisms has been lacking, mainly because of insufficient understanding of the cellular as well as molecular level mechanisms. This Special Issue represents a focused, integrated interdisciplinary approach summarizing very recent leading edge developments in this emerging field with emphasis on lipid–protein interactions. The data now becoming available are paving the way to the development of improved diagnostics, therapies and preventive measures to combat the above diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper(II) complexes of hexadentate ethylenediaminetetracarboxylic acid type ligands Heda3p and Heddadp (Heda3p = ethylenediamine-N-acetic-N,N',N'-tri-3-propionic acid; H eddadp = ethylenediamine-N,N'-diacetic-N,N'-di-3- propionic acid) have been prepared. An octahedral trans(O) geometry (two propionate ligands coordinated in axial positions) has been established crystallographically for the Ba[Cu(eda3p)]·8HO compound, while Ba[Cu(eddadp)]·8HO is proposed to adopt a trans(O ) geometry (two axial acetates) on the basis of density functional theory calculations and comparisons of IR and UV-vis spectral data. Experimental and computed structural data correlating similar copper(II) chelate complexes have been used to better understand the isomerism and departure from regular octahedral geometry within the series. The in-plane O-Cu-N chelate angles show the smallest deviation from the ideal octahedral value of 90°, and hence the lowest strain, for the eddadp complex with two equatorial ß-propionate rings. A linear dependence between tetragonality and the number of five-membered rings has been established. A natural bonding orbital analysis of the series of complexes is also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently, the main source for the production of liquid transportation fuels is petroleum, the continued use of which faces many challenges including depleting oil reserves, significant oil price rises, and environmental concerns over global warming which is widely believed to be due to fossil fuel derived CO2 emissions and other greenhouse gases. In this respect, lignocellulosic or plant biomass is a particularly interesting resource as it is the only renewable source of organic carbon that can be converted into liquid transportation fuels. The gasification of biomass produces syngas which can then be converted into synthetic liquid hydrocarbon fuels by means of the Fischer-Tropsch (FT) synthesis. This process has been widely considered as an attractive option for producing clean liquid hydrocarbon fuels from biomass that have been identified as promising alternatives to conventional fossil fuels like diesel and kerosene. The resulting product composition in FT synthesis is influenced by the type of catalyst and the reaction conditions that are used in the process. One of the issues facing this conversion process is the development of a technology that can be scaled down to match the scattered nature of biomass resources, including lower operating pressures, without compromising liquid composition. The primary aims of this work were to experimentally explore FT synthesis at low pressures for the purpose of process down-scaling and cost reduction, and to investigate the potential for obtaining an intermediate FT synthetic crude liquid product that can be integrated into existing refineries under the range of process conditions employed. Two different fixed-bed micro-reactors were used for FT synthesis; a 2cm3 reactor at the University of Rio de Janeiro (UFRJ) and a 20cm3 reactor at Aston University. The experimental work firstly involved the selection of a suitable catalyst from three that were available. Secondly, a parameter study was carried out on the 20cm3 reactor using the selected catalyst to investigate the influence of reactor temperature, reactor pressure, space velocity, the H2/CO molar ratio in the feed syngas and catalyst loading on the reaction performance measured as CO conversion, catalyst stability, product distribution, product yields and liquid hydrocarbon product composition. From this parameter study a set of preferred operating conditions was identified for low pressure FT synthesis. The three catalysts were characterized using BET, XRD, TPR and SEM. The catalyst selected was an unpromoted Co/Al2O3 catalyst. FT synthesis runs on the 20cm3 reactor at Aston were conducted for 48 hours. Permanent gases and light hydrocarbons (C1-C5) were analysed in an online GC-TCD/FID at hourly intervals. The liquid hydrocarbons collected were analyzed offline using GC-MS for determination of fuel composition. The parameter study showed that CO conversion and liquid hydrocarbon yields increase with increasing reactor pressure up to around 8 bar, above which the effect of pressure is small. The parameters that had the most significant influence on CO conversion, product selectivity and liquid hydrocarbon yields were reactor temperature and catalyst loading. The preferred reaction conditions identified for this research were: T = 230ºC, P = 10 bar, H2/CO = 2.0, WHSV = 2.2 h-1, and catalyst loading = 2.0g. Operation in the low range of pressures studied resulted in low CO conversions and liquid hydrocarbon yields, indicating that low pressure BTL-FT operation may not be industrially viable as the trade off in lower CO conversions and once-through liquid hydrocarbon product yields has to be carefully weighed against the potential cost savings resulting from process operation at lower pressures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT