43 resultados para SEMICONDUCTOR COLLOIDS
Resumo:
We demonstrate simultaneous demultiplexing, data regeneration and clock recovery at 10Gbits/s, using a single semiconductor optical amplifier–based nonlinear-optical loop mirror in a phase-locked loop configuration.
Resumo:
The effect of coherent single frequency injection on two-section semiconductor lasers is studied numerically using a model based on a set of delay differential equations. The existence of bistability between different continuous-wave and nonstationary regimes of operation is demonstrated in the case of sufficiently large linewidth enhancement factors. © 2014 American Physical Society.
Resumo:
In this paper, we study generation of Bessel beams from semiconductor lasers with high beam propagation parameter M2 and their utilization for optical trapping and manipulation of microscopic particles including living cells. The demonstrated optical tweezing with diodegenerated Bessel beams paves the way to replace their vibronic-generated counterparts for a range of applications towards novel lab-on-a-chip configurations.
Resumo:
Optical manipulation of microscopic objects (including living cells) using Bessel beams from semiconductor lasers has been demonstrated for the first time. In addition, it has been found in the experiments that a Bessel beam of sufficient power from a semiconductor laser makes it possible to manipulate simultaneously several microscopic objects captured into its central lobe and the first ring. © 2014 Pleiades Publishing, Ltd.
Resumo:
In this letter, we report on a high-power operation of an optically pumped quantum-dot semiconductor disk laser designed for emission at 1180 nm. As a consequence of the optimization of the operation conditions, a record-high continuous-wave output power exceeding 7 W is obtained for this wavelength at a heat-sink temperature of 2 °C. A wavelength tuning over a range of 37 nm is achieved using a birefringent filter inside the cavity.
Resumo:
The focusing of multimode laser diode beams is probably the most significant problem that hinders the expansion of the high-power semiconductor lasers in many spatially-demanding applications. Generally, the 'quality' of laser beams is characterized by so-called 'beam propagation parameter' M2, which is defined as the ratio of the divergence of the laser beam to that of a diffraction-limited counterpart. Therefore, M2 determines the ratio of the beam focal-spot size to that of the 'ideal' Gaussian beam focused by the same optical system. Typically, M2 takes the value of 20-50 for high-power broad-stripe laser diodes thus making the focal-spot 1-2 orders of magnitude larger than the diffraction limit. The idea of 'superfocusing' for high-M2 beams relies on a technique developed for the generation of Bessel beams from laser diodes using a cone-shaped lens (axicon). With traditional focusing of multimode radiation, different curvatures of the wavefronts of the various constituent modes lead to a shift of their focal points along the optical axis that in turn implies larger focal-spot sizes with correspondingly increased values of M2. In contrast, the generation of a Bessel-type beam with an axicon relies on 'self-interference' of each mode thus eliminating the underlying reason for an increase in the focal-spot size. For an experimental demonstration of the proposed technique, we used a fiber-coupled laser diode with M2 below 20 and an emission wavelength in ~1μm range. Utilization of the axicons with apex angle of 140deg, made by direct laser writing on a fiber tip, enabled the demonstration of an order of magnitude decrease of the focal-spot size compared to that achievable using an 'ideal' lens of unity numerical aperture. © 2014 SPIE.
Resumo:
A diode-cladding-pumped mid-infrared passively Q-switched Ho 3+-doped fluoride fiber laser using a reverse designed broad band semiconductor saturable mirror (SESAM) was demonstrated. Nonlinear reflectivity of the SESAM was measured using an in-house Yb3+-doped mode-locked fiber laser at 1062 nm. Stable pulse train was produced at a slope efficient of 12.1% with respect to the launched pump power. Maximum pulse energy of 6.65 μJ with a pulse width of 1.68 μs and signal to noise ratio (SNR) of ~50 dB was achieved at a repetition rate of 47.6 kHz and center wavelength of 2.971 μm. To the best of our knowledge, this is the first 3 μm region SESAM based Q-switched fiber laser with the highest average power and pulse energy, as well as the longest wavelength from mid-infrared passively Q-switched fluoride fiber lasers. © 2014 SPIE.
Resumo:
In this paper, we demonstrate, for the first time to the best of our knowledge, utilization of Bessel beams generated from a semiconductor laser for optical trapping and manipulation of microscopic particles including living cells. © 2014 OSA.
Resumo:
A high-dielectric constant (high-k) TiOx thin layer was fabricated on hydrogen-terminated diamond (H-diamond) surface by low temperature oxidation of a thin titanium layer in ambient air. The metallic titanium layer was deposited by sputter deposition. The dielectric constant of the resultant TiOx was calculated to be around 12. The capacitance density of the metal-oxide-semiconductor (MOS) based on the TiOx/H-diamond was as high as 0.75 µF/cm2 contributed from the high-k value and the very thin thickness of the TiOx layer. The leakage current was lower than 10-13 A at reverse biases and 10-7A at the forward bias of -2 V. The MOS field-effect transistor based on the high-k TiOx/H-diamond was demonstrated. The utilization of the high-k TiOx with a very thin thickness brought forward the features of an ideally low subthreshold swing slope of 65 mV per decade and improved drain current at low gate voltages. The advantages of the utilization high-k dielectric for diamond MOSFETs are anticipated.
Resumo:
This paper will review the recent advances in the field of ultrashort pulse generation from optically pumped vertical-external-cavity surface-emitting lasers (OP-VECSELs). In this review, we will summarize the most significant results presented over the last 15 years, before highlighting recent breakthroughs related to mode-locked VECSELs by different research groups. Different mode-locking techniques for OP-VECSELs are described in detail. Previously, saturable absorbers, such as semiconductor saturable absorber mirrors—external, or internal as in mode-locked integrated external-cavity surface emitting lasers (MIXSEL)—, and recently, novel-material-based carbon-nanotube and graphene saturable absorbers have been employed. A new mode-locking method was presented and discussed in recent years. This method is referred to as self-mode-locking or saturable-absorber-free operation of mode-locked VECSELs. In this context, we particularly focus on achievements regarding self-mode-locking, which is considered a promising technique for the realization of high-power, compact, robust and cost-efficient ultrashort pulse lasers. To date, the presented mode-locking techniques have led to great enhancement in average powers, peak powers, and repetition rates that can be achieved with passively mode-locked VECSELs.
Dark soliton generation from semiconductor optical amplifier gain medium in ring fiber configuration
Resumo:
We have investigated the mode-lock operation from a semiconductor optical amplifier (SOA) gain chip in the ring fibre configuration. At lower pump currents, the laser generates dark soliton pulses both at the fundamental repetition rate of 39 MHz and supports up to the 6th harmonic order corresponding to 234-MHz repetition rate with an output power of ∼2.1 mW. At higher pump currents, the laser can be switched between the bright, dark and concurrent bright and dark soliton generation regimes.
Resumo:
In the last decade, vertical-external-cavity surface-emitting lasers (VECSELs) have become promising sources of ultrashort laser pulses. While the mode-locked operation has been strongly relying on costly semiconductor saturable-Absorber mirrors for many years, new techniques have been found for pulse formation. Mode-locking VECSELs are nowadays not only achievable by using a variety of saturable absorbers, but also by using a saturable-Absorber-free technique referred to as self-mode-locking (SML), which is to be highlighted here.