40 resultados para Robust Learning Algorithm


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Recently, much research has been proposed using nature inspired algorithms to perform complex machine learning tasks. Ant colony optimization (ACO) is one such algorithm based on swarm intelligence and is derived from a model inspired by the collective foraging behavior of ants. Taking advantage of the ACO in traits such as self-organization and robustness, this paper investigates ant-based algorithms for gene expression data clustering and associative classification. Methods and material: An ant-based clustering (Ant-C) and an ant-based association rule mining (Ant-ARM) algorithms are proposed for gene expression data analysis. The proposed algorithms make use of the natural behavior of ants such as cooperation and adaptation to allow for a flexible robust search for a good candidate solution. Results: Ant-C has been tested on the three datasets selected from the Stanford Genomic Resource Database and achieved relatively high accuracy compared to other classical clustering methods. Ant-ARM has been tested on the acute lymphoblastic leukemia (ALL)/acute myeloid leukemia (AML) dataset and generated about 30 classification rules with high accuracy. Conclusions: Ant-C can generate optimal number of clusters without incorporating any other algorithms such as K-means or agglomerative hierarchical clustering. For associative classification, while a few of the well-known algorithms such as Apriori, FP-growth and Magnum Opus are unable to mine any association rules from the ALL/AML dataset within a reasonable period of time, Ant-ARM is able to extract associative classification rules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Supply chain formation (SCF) is the process of determining the set of participants and exchange relationships within a network with the goal of setting up a supply chain that meets some predefined social objective. Many proposed solutions for the SCF problem rely on centralized computation, which presents a single point of failure and can also lead to problems with scalability. Decentralized techniques that aid supply chain emergence offer a more robust and scalable approach by allowing participants to deliberate between themselves about the structure of the optimal supply chain. Current decentralized supply chain emergence mechanisms are only able to deal with simplistic scenarios in which goods are produced and traded in single units only and without taking into account production capacities or input-output ratios other than 1:1. In this paper, we demonstrate the performance of a graphical inference technique, max-sum loopy belief propagation (LBP), in a complex multiunit unit supply chain emergence scenario which models additional constraints such as production capacities and input-to-output ratios. We also provide results demonstrating the performance of LBP in dynamic environments, where the properties and composition of participants are altered as the algorithm is running. Our results suggest that max-sum LBP produces consistently strong solutions on a variety of network structures in a multiunit problem scenario, and that performance tends not to be affected by on-the-fly changes to the properties or composition of participants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graph embedding is a general framework for subspace learning. However, because of the well-known outlier-sensitiveness disadvantage of the L2-norm, conventional graph embedding is not robust to outliers which occur in many practical applications. In this paper, an improved graph embedding algorithm (termed LPP-L1) is proposed by replacing L2-norm with L1-norm. In addition to its robustness property, LPP-L1 avoids small sample size problem. Experimental results on both synthetic and real-world data demonstrate these advantages. © 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present and analyze three different online algorithms for learning in discrete Hidden Markov Models (HMMs) and compare their performance with the Baldi-Chauvin Algorithm. Using the Kullback-Leibler divergence as a measure of the generalization error we draw learning curves in simplified situations and compare the results. The performance for learning drifting concepts of one of the presented algorithms is analyzed and compared with the Baldi-Chauvin algorithm in the same situations. A brief discussion about learning and symmetry breaking based on our results is also presented. © 2006 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this letter, we derive continuum equations for the generalization error of the Bayesian online algorithm (BOnA) for the one-layer perceptron with a spherical covariance matrix using the Rosenblatt potential and show, by numerical calculations, that the asymptotic performance of the algorithm is the same as the one for the optimal algorithm found by means of variational methods with the added advantage that the BOnA does not use any inaccessible information during learning. © 2007 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In nonlinear and stochastic control problems, learning an efficient feed-forward controller is not amenable to conventional neurocontrol methods. For these approaches, estimating and then incorporating uncertainty in the controller and feed-forward models can produce more robust control results. Here, we introduce a novel inversion-based neurocontroller for solving control problems involving uncertain nonlinear systems which could also compensate for multi-valued systems. The approach uses recent developments in neural networks, especially in the context of modelling statistical distributions, which are applied to forward and inverse plant models. Provided that certain conditions are met, an estimate of the intrinsic uncertainty for the outputs of neural networks can be obtained using the statistical properties of networks. More generally, multicomponent distributions can be modelled by the mixture density network. Based on importance sampling from these distributions a novel robust inverse control approach is obtained. This importance sampling provides a structured and principled approach to constrain the complexity of the search space for the ideal control law. The developed methodology circumvents the dynamic programming problem by using the predicted neural network uncertainty to localise the possible control solutions to consider. A nonlinear multi-variable system with different delays between the input-output pairs is used to demonstrate the successful application of the developed control algorithm. The proposed method is suitable for redundant control systems and allows us to model strongly non-Gaussian distributions of control signal as well as processes with hysteresis. © 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the major drawbacks for mobile nodes in wireless networks is power management. Our goal is to evaluate the performance power control scheme to be used to reduce network congestion, improve quality of service and collision avoidance in vehicular network and road safety application. Some of the importance of power control (PC) are improving spatial reuse, and increasing network capacity in mobile wireless communications. In this simulation we have evaluated the performance of existing rate algorithms compared with context Aware Rate selection algorithm (ACARS) and also seen the performance of ACARS and how it can be applied to road safety, improve network control and power management. Result shows that ACARS is able to minimize the total transmit power in the presence of propagation processes and mobility of vehicles, by adapting to the fast varying channels conditions with the Path loss exponent values that was used for that environment which is shown in the network simulation parameter. Our results have shown that ACARS is a very robust algorithm which performs very well with the effect of propagation processes that is prone to every transmitted signal in mobile networks. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resilience is a term that is gaining currency in conservation and sustainable development, though its meaning and value in this context is yet to be defined. Searching for Resilience in Sustainable Development examines ways in which resilience may be created within the web of ecological, socio-economic and cultural systems that make up the world in. The authors embark upon a learning journey exploring both robust and fragile systems and asking questions of groups and individuals actively involved in building or maintaining resilience.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lifelong surveillance is not cost-effective after endovascular aneurysm repair (EVAR), but is required to detect aortic complications which are fatal if untreated (type 1/3 endoleak, sac expansion, device migration). Aneurysm morphology determines the probability of aortic complications and therefore the need for surveillance, but existing analyses have proven incapable of identifying patients at sufficiently low risk to justify abandoning surveillance. This study aimed to improve the prediction of aortic complications, through the application of machine-learning techniques. Patients undergoing EVAR at 2 centres were studied from 2004–2010. Aneurysm morphology had previously been studied to derive the SGVI Score for predicting aortic complications. Bayesian Neural Networks were designed using the same data, to dichotomise patients into groups at low- or high-risk of aortic complications. Network training was performed only on patients treated at centre 1. External validation was performed by assessing network performance independently of network training, on patients treated at centre 2. Discrimination was assessed by Kaplan-Meier analysis to compare aortic complications in predicted low-risk versus predicted high-risk patients. 761 patients aged 75 +/− 7 years underwent EVAR in 2 centres. Mean follow-up was 36+/− 20 months. Neural networks were created incorporating neck angu- lation/length/diameter/volume; AAA diameter/area/volume/length/tortuosity; and common iliac tortuosity/diameter. A 19-feature network predicted aor- tic complications with excellent discrimination and external validation (5-year freedom from aortic complications in predicted low-risk vs predicted high-risk patients: 97.9% vs. 63%; p < 0.0001). A Bayesian Neural-Network algorithm can identify patients in whom it may be safe to abandon surveillance after EVAR. This proposal requires prospective study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we present an adaptive unequal loss protection (ULP) scheme for H264/AVC video transmission over lossy networks. This scheme combines erasure coding, H.264/AVC error resilience techniques and importance measures in video coding. The unequal importance of the video packets is identified in the group of pictures (GOP) and the H.264/AVC data partitioning levels. The presented method can adaptively assign unequal amount of forward error correction (FEC) parity across the video packets according to the network conditions, such as the available network bandwidth, packet loss rate and average packet burst loss length. A near optimal algorithm is developed to deal with the FEC assignment for optimization. The simulation results show that our scheme can effectively utilize network resources such as bandwidth, while improving the quality of the video transmission. In addition, the proposed ULP strategy ensures graceful degradation of the received video quality as the packet loss rate increases. © 2010 IEEE.