41 resultados para Resistive Lines
Resumo:
The astrogliotic responses of the CCF-STTG1, U251-MG, and U373-MG human astrocytoma lines were determined after exposure to ethanol, trimethyltin chloride (TMTC), and acrylamide over 4, 16, and 24 h. Basal glial fibrillary acidic protein (GFAP) expression in the U-251MG and U373-MG cells was 10-fold greater than the CCF-STGG1 line. Ethanol treatment over 24 h, but not at 4 and 16 h, resulted in significant increases in GFAP in all three glioma lines at sub-cytotoxic levels; the GFAP responses in the CCF-STTG1 line were the most sensitive, as concentrations of 0.1 and 1 mM led to increases in GFAP expression compared with control of 56.8 ± 15.7 and 58.9 ± 11.5%, respectively (P < 0.05). Treatment with TMTC (1 μM) over 4 h showed elevated GFAP expression in the U251-MG cell line to 28.0 ± 15.7% above control levels (P < 0.01), but not in the other U373-MG or CCF-STTG1 cells. At 4 h, MTT turnover was markedly increased compared with control, particularly in the U373-MG line at concentrations as low as 1 μM (17.1 ± 2.3%; P < 0.01). TMTC exposure over 16 and 24 h resulted in reduction in GFAP expression in all three lines at concentrations; at 24 h incubation, the reduction was >50% (P < 0.01). There were no changes in GFAP expression or MTT turnover in response to acrylamide except at the highest concentration ranges of 10-100 mM. This study underlines the significance of period of exposure, as well as toxin concentration in astrocytoma cellular response to toxic pressure. © 2007 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The metabolite 2,5-hexanedione (HD) is the cause of neurotoxicity linked with chronic n-hexane exposure. Acute exposure to high levels of 2,5-HD, have also shown toxic effects in neuronal cells and non-neuronal cells. Isomers of 2,5-HD, 2,3- and 3,4-HD, added to foodstuffs, are reported to be non-toxic. The acute cytotoxic effects of 2,5-, 2,3- and 3,4-HD were evaluated in neural (NT2.N, SK-N-SH), astrocytic (CCF-STTG1) and non-neural (NT2.D1) cell lines. All the cell lines were highly resistant to 2,5-HD (34-426 mM) at 4-h exposure, although sensitivity was greatest with NT2.D1, then SK-N-SH, NT2.N and finally the CCF-STTG1 line. At 24-h exposure, cell vulnerability increased 5-10-fold. The NT2.D1 cells were again the most sensitive, followed by NT2.N, SK-N-SH and then the CCF-STTG1 cells. 2,3- and 3,4-HD (8-84 mM), were significantly more toxic towards all four cell lines compared with 2,5-HD, after 4-h exposure. After 24-h exposure there was a 12-fold increase in inhibition of MTT turnover in the SK-N-SH cells and a 4-fold increase in the CCF-STTG1 cells, compared with 2,5-HD exposure. 2,3- and 3,4-HD, were significantly less toxic to the NT2.N cells than the SK-N-SH cells after 24-h exposure to the compounds, demonstrating a differing toxin vulnerability between these neural and neuroblastoma cell lines. This study indicates that these non-neuronal and neuronal cells are acutely resistant to 2,5-HD cytotoxicity, whilst the previously unreported sensitivity of all four cell lines to the 2,3- and 3,4- isomers of HD to has been shown to be significantly greater than that of 2,5-HD. © 2006 Elsevier B.V. All rights reserved.
Resumo:
Mixtures of pesticides in foodstuffs and the environment are ubiquitous in the developed world and although agents are usually exhaustively tested individually, the toxicological implications of pesticide mixtures are underreported. In this study, the effects of two fungicides, fenhexamid and myclobutanil were investigated individually and in combination on two human cell lines, SH-SY5Y neuronal cells and U-251 MG glial cells. After 48. h of incubation with increasing concentrations of pesticides ranging from 1 to 1000. μM, gene expression profiles were studied in addition to toxicity end points, including cell viability, mitochondrial depolarisation as well as cellular glutathione maintenance. There were no significant differences between the susceptibility of the two cell lines in terms of cell viability assessment or mitochondrial membrane potential, when agents were administered either individually or in combination. By contrast, in the presence of the fungicides, the SH-SY5Y cells showed significantly greater susceptibility to oxidative stress in terms of total thiol depletion in comparison with the astrocytic cells. Treatment with the two pesticides led to significant changes in the cell lines' expression of several genes which regulate cell cycle control and growth (RB1, TIMP1) as well as responses to DNA attrition (ATM and CDA25A) and control of apoptosis (FAS). There was no evidence in this study that the combination of fenhexamid and myclobutanil was significantly more toxic than individual exposure, although gene expression changes suggested there may be differences in the sub-lethal response of both cell lines to both individual and combined exposure.
Resumo:
Record small and low loss slow light optical signal processing devices are proposed and demonstrated using the recently invented Surface Nanoscale Axial Photonics (SNAP) technology.
Resumo:
Here we present the design and fabrication of multi-notch optical fibre Bragg gratings for suppressing OH emission lines in the near infrared spectra of the night sky for astrophysical applications. We demonstrate a novel approach of fabricating 2, 3 and 5-notch filters using the phase mask technology, which show a good match with the model.
Resumo:
Background: Recent attention on chemotherapeutic intervention against cancer has been focused on discovering and developing phytochemicals as anticancer agents with improved efficacy, low drug resistance and toxicity, low cost and limited adverse side effects. In this study, we investigated the effects of Curcuma C20-dialdehyde on growth, apoptosis and cell cycle arrest in colon and cervical cancer cell lines. Materials and Methods: Antiproliferative, apoptosis induction, and cell cycle arrest activities of Curcuma C20-dialdehyde were determined by WST cell proliferation assay, flow cytometric Alexa fluor 488-annexin V/propidium iodide (PI) staining and PI staining, respectively. Results: Curcuma C20 dialdehyde suppressed the proliferation of HCT116, HT29 and HeLa cells, with IC50 values of 65.4±1.74 μg/ml, 58.4±5.20 μg/ml and 72.0±0.03 μg/ml, respectively, with 72 h exposure. Flow cytometric analysis revealed that percentages of early apoptotic cells increased in a dose-dependent manner upon exposure to Curcuma C20-dialdehyde. Furthermore, exposure to lower concentrations of this compound significantly induced cell cycle arrest at G1 phase for both HCT116 and HT29 cells, while higher concentrations increased sub-G1 populations. However, the concentrations used in this study could not induce cell cycle arrest but rather induced apoptotic cell death in HeLa cells. Conclusions: Our findings suggest that the phytochemical Curcuma C20-dialdehyde may be a potential antineoplastic agent for colon and cervical cancer chemotherapy and/or chemoprevention. Further studies are needed to characterize the drug target or mode of action of the Curcuma C20-dialdehyde as an anticancer agent.
Resumo:
Models of Alzheimer’s disease (AD) have provided useful insights into the pathogenesis and mechanistic pathways that lead to its development. One emerging idea about AD is that it may be described as a hypometabolic disorder due to the reduction of glucose uptake in AD brains. Inappropriate processing of Amyloid Precursor Protein (APP) is considered central to the initiation and progression of the disease. Although the exact role of APP misprocessing is unclear, it may play a role in neuronal metabolism before the onset of neurodegeneration. To investigate the potential role of APP in neuronal metabolism, the SHSY5Y neuroblastoma cell line was used to generate cell lines that stably overexpress wild type APP695 or express Swedish mutated-APP observed in familial AD (FAD), both under the control of the neuronal promoter, Synapsin I. The effects of APP on glucose uptake, cellular stress and energy homeostasis were studied extensively. It was found that APP-overexpressing cells exhibited decreased glucose uptake with changes in basal oxygen consumption in comparison to control cell lines. Similar studies were also performed in fibroblasts taken from FAD patients compared with control fibroblasts. Previous studies found FAD-derived fibroblasts displayed altered metabolic profiles, calcium homeostasis and oxidative stress when compared to controls. As such, in this study fibroblasts were studied in terms of their ability to metabolise glucose and their mitochondrial function. Results show that FAD-derived fibroblasts demonstrate no differences in mitochondrial function, or response to oxidative stress compared to control fibroblasts. However, control fibroblasts treated with Aβ1-42 demonstrated changes in glucose uptake. This study highlights the importance of APP expression within non-neuronal cell lines, suggesting that whilst AD is considered a brain-associated disorder, peripheral effects in non-neuronal cell types should also be considered when studying the effects of Aβ on metabolism.
Resumo:
The results of numerical modelling of nonlinear propagation of an optical signal in multimode fibres with a small differential group delay are presented. It is found that the dependence of the error vector magnitude (EVM) on the differential group delay can be reduced by increasing the number of ADC samples per symbol in the numerical implementation of the differential group delay compensation algorithm in the receiver. The possibility of using multimode fibres with a small differential group delay for data transmission in modern digital communication systems is demonstrated. It is shown that with increasing number of modes the strong coupling regime provides a lower EVM level than the weak coupling one.
Resumo:
This paper describes the potential of pre-setting 11kV overhead line ratings over a time period of sufficient length to be useful to the real-time management of overhead lines. This forecast is based on short and long term freely available weather forecasts and is used to help investigate the potential for realising dynamic rating benefits on the electricity network. A comparison between the realisable benefits in ratings using this forecast data, over the period of a year has been undertaken.
Resumo:
Creation of miniature optical delay lines and buffers is one of the greatest challenges of the modern photonics which can revolutionize optical communications and computing. Several remarkable designs of slow light optical delay lines employing coupled ring resonators and photonic crystal waveguides has been suggested and experimentally demonstrated. However, the insertion loss of these devices is too large for their practical applications. Alternatively, the recently developed photonic fabrication platform, Surface Nanoscale Axial Photonics (SNAP) allows us to fabricate record small delay lines with unprecedentedly small dispersion and low loss. In this report, we review the recent progress in fabrication and design of miniature slow light devices and buffers, in particular, those based on the SNAP technology.
Resumo:
Miniature planar waveguide and fiber-based delay lines and buffers including slow light resonant structures and devices are reviewed.