57 resultados para Random


Relevância:

20.00% 20.00%

Publicador:

Resumo:

One developing theme in consciousness research is that consciousness is not the product of any specific component of the brain, rather it is an emergent property of the changing patterns of connectivity between different specialised functional components. For example, the dynamic core hypothesis proposes that conscious experience requires high levels of neural complexity, where complexity is defined in terms of functional connectivity. To test this hypothesis, electroencephalography was recorded while participants were shown random dot-stereograms. Consistent with the dynamic core hypothesis, neural complexity increased as the participants changed from simply viewing the stereogram to consciously perceiving the hidden 3D image.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study phenomenological scaling theories of the polymer dynamics in random media, employing the existing scaling theories of polymer chains and the percolation statistics. We investigate both the Rouse and the Zimm model for Brownian dynamics and estimate the diffusion constant of the center-of-mass of the chain in such disordered media. For internal dynamics of the chain, we estimate the dynamic exponents. We propose similar scaling theory for the reptation dynamics of the chain in the framework of Flory theory for the disordered medium. The modifications in the case of correlated disorders are also discussed. .

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We suggest a model for data losses in a single node (memory buffer) of a packet-switched network (like the Internet) which reduces to one-dimensional discrete random walks with unusual boundary conditions. By construction, the model has critical behavior with a sharp transition from exponentially small to finite losses with increasing data arrival rate. We show that for a finite-capacity buffer at the critical point the loss rate exhibits strong fluctuations and non-Markovian power-law correlations in time, in spite of the Markovian character of the data arrival process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept of random lasers exploiting multiple scattering of photons in an amplifying disordered medium in order to generate coherent light without a traditional laser resonator has attracted a great deal of attention in recent years. This research area lies at the interface of the fundamental theory of disordered systems and laser science. The idea was originally proposed in the context of astrophysics in the 1960s by V.S. Letokhov, who studied scattering with "negative absorption" of the interstellar molecular clouds. Research on random lasers has since developed into a mature experimental and theoretical field. A simple design of such lasers would be promising for potential applications. However, in traditional random lasers the properties of the output radiation are typically characterized by complex features in the spatial, spectral and time domains, making them less attractive than standard laser systems in terms of practical applications. Recently, an interesting and novel type of one-dimensional random laser that operates in a conventional telecommunication fibre without any pre-designed resonator mirrors-random distributed feedback fibre laser-was demonstrated. The positive feedback required for laser generation in random fibre lasers is provided by the Rayleigh scattering from the inhomogeneities of the refractive index that are naturally present in silica glass. In the proposed laser concept, the randomly backscattered light is amplified through the Raman effect, providing distributed gain over distances up to 100km. Although an effective reflection due to the Rayleigh scattering is extremely small (~0.1%), the lasing threshold may be exceeded when a sufficiently large distributed Raman gain is provided. Such a random distributed feedback fibre laser has a number of interesting and attractive features. The fibre waveguide geometry provides transverse confinement, and effectively one-dimensional random distributed feedback leads to the generation of a stationary near-Gaussian beam with a narrow spectrum. A random distributed feedback fibre laser has efficiency and performance that are comparable to and even exceed those of similar conventional fibre lasers. The key features of the generated radiation of random distributed feedback fibre lasers include: a stationary narrow-band continuous modeless spectrum that is free of mode competition, nonlinear power broadening, and an output beam with a Gaussian profile in the fundamental transverse mode (generated both in single mode and multi-mode fibres).This review presents the current status of research in the field of random fibre lasers and shows their potential and perspectives. We start with an introductory overview of conventional distributed feedback lasers and traditional random lasers to set the stage for discussion of random fibre lasers. We then present a theoretical analysis and experimental studies of various random fibre laser configurations, including widely tunable, multi-wavelength, narrow-band generation, and random fibre lasers operating in different spectral bands in the 1-1.6μm range. Then we discuss existing and future applications of random fibre lasers, including telecommunication and distributed long reach sensor systems. A theoretical description of random lasers is very challenging and is strongly linked with the theory of disordered systems and kinetic theory. We outline two key models governing the generation of random fibre lasers: the average power balance model and the nonlinear Schrödinger equation based model. Recently invented random distributed feedback fibre lasers represent a new and exciting field of research that brings together such diverse areas of science as laser physics, the theory of disordered systems, fibre optics and nonlinear science. Stable random generation in optical fibre opens up new possibilities for research on wave transport and localization in disordered media. We hope that this review will provide background information for research in various fields and will stimulate cross-disciplinary collaborations on random fibre lasers. © 2014 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study how the spatial distribution of inertial particles evolves with time in a random flow. We describe an explosive appearance of caustics and show how they influence an exponential growth of clusters due to smooth parts of the flow, leading in particular to an exponential growth of the average distance between particles. We demonstrate how caustics restrict applicability of Lagrangian description to inertial particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiwavelength lasing in the random distributed feedback fiber laser is demonstrated by employing an all fiber Lyot filter. Stable multiwavelength generation is obtained, with each line exhibiting subnanometer line-widths. A flat power distribution over multiple lines is obtained, which indicates that the power between lines is redistributed in nonlinear mixing processes. The multiwavelength generation is observed both in first and second Stokes waves. © 2014 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Narrow-band emission of spectral width down to ∼0.05 nm linewidth is achieved in the random distributed feedback fiber laser employing narrow-band fiber Bragg grating or fiber Fabry-Perot interferometer filters. The observed line-width is ∼10 times less than line-width of other demonstrated up to date random distributed feedback fiber lasers. The random DFB laser with Fabry-Perot interferometer filter provides simultaneously multi-wavelength and narrow-band (within each line) generation with possibility of further wavelength tuning. © 2013 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the first time we report full numerical NLSE-based modeling of generation properties of random distributed feedback fiber laser based on Rayleigh scattering. The model which takes into account the random backscattering via its average strength only describes well power and spectral properties of random DFB fiber lasers. The influence of dispersion and nonlinearity on spectral and statistical properties is investigated. The evidence of non-gaussian intensity statistics is found. © 2013 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We experimentally and theoretically describe formation of random fiber laser's optical spectrum. We propose a new concept of active cycled wave kinetics from which we derive first ever nonlinear kinetic theory describing laser spectrum. © OSA 2015.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study noisy computation in randomly generated k-ary Boolean formulas. We establish bounds on the noise level above which the results of computation by random formulas are not reliable. This bound is saturated by formulas constructed from a single majority-like gate. We show that these gates can be used to compute any Boolean function reliably below the noise bound.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rotation invariance is important for an iris recognition system since changes of head orientation and binocular vergence may cause eye rotation. The conventional methods of iris recognition cannot achieve true rotation invariance. They only achieve approximate rotation invariance by rotating the feature vector before matching or unwrapping the iris ring at different initial angles. In these methods, the complexity of the method is increased, and when the rotation scale is beyond the certain scope, the error rates of these methods may substantially increase. In order to solve this problem, a new rotation invariant approach for iris feature extraction based on the non-separable wavelet is proposed in this paper. Firstly, a bank of non-separable orthogonal wavelet filters is used to capture characteristics of the iris. Secondly, a method of Markov random fields is used to capture rotation invariant iris feature. Finally, two-class kernel Fisher classifiers are adopted for classification. Experimental results on public iris databases show that the proposed approach has a low error rate and achieves true rotation invariance. © 2010.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditional wave kinetics describes the slow evolution of systems with many degrees of freedom to equilibrium via numerous weak non-linear interactions and fails for very important class of dissipative (active) optical systems with cyclic gain and losses, such as lasers with non-linear intracavity dynamics. Here we introduce a conceptually new class of cyclic wave systems, characterized by non-uniform double-scale dynamics with strong periodic changes of the energy spectrum and slow evolution from cycle to cycle to a statistically steady state. Taking a practically important example—random fibre laser—we show that a model describing such a system is close to integrable non-linear Schrödinger equation and needs a new formalism of wave kinetics, developed here. We derive a non-linear kinetic theory of the laser spectrum, generalizing the seminal linear model of Schawlow and Townes. Experimental results agree with our theory. The work has implications for describing kinetics of cyclical systems beyond photonics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiwavelength lasing in the random distributed feedback fiber laser is demonstrated by employing an all fiber Lyot filter. Stable multiwavelength generation is obtained, with each line exhibiting sub-nanometer line-widths. A flat power distribution over multiple lines is also obtained, which indicates the contribution of nonlinear wave mixing towards power redistribution and equalization in the system. The multiwavelength generation is observed simultaneously in first and second Stokes waves. © 2014 SPIE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we propose a NLSE-based model of power and spectral properties of the random distributed feedback (DFB) fiber laser. The model is based on coupled set of non-linear Schrödinger equations for pump and Stokes waves with the distributed feedback due to Rayleigh scattering. The model considers random backscattering via its average strength, i.e. we assume that the feedback is incoherent. In addition, this allows us to speed up simulations sufficiently (up to several orders of magnitude). We found that the model of the incoherent feedback predicts the smooth and narrow (comparing with the gain spectral profile) generation spectrum in the random DFB fiber laser. The model allows one to optimize the random laser generation spectrum width varying the dispersion and nonlinearity values: we found, that the high dispersion and low nonlinearity results in narrower spectrum that could be interpreted as four-wave mixing between different spectral components in the quasi-mode-less spectrum of the random laser under study could play an important role in the spectrum formation. Note that the physical mechanism of the random DFB fiber laser formation and broadening is not identified yet. We investigate temporal and statistical properties of the random DFB fiber laser dynamics. Interestingly, we found that the intensity statistics is not Gaussian. The intensity auto-correlation function also reveals that correlations do exist. The possibility to optimize the system parameters to enhance the observed intrinsic spectral correlations to further potentially achieved pulsed (mode-locked) operation of the mode-less random distributed feedback fiber laser is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The simplest model for a description of the random distributed feedback (RDFB) Raman fiber laser is a power balance model describing the evolution of the intensities of the waves over the fiber length. The model predicts well the power performances of the RDFB fiber laser including the generation threshold, the output power and pump and generation wave intensity distributions along the fiber. In the present work, we extend the power balance model and modify equations in such a way that they describe now frequency dependent spectral power density instead of integral over the spectrum intensities. We calculate the generation spectrum by using the depleted pump wave longitudinal distribution derived from the conventional power balance model. We found the spectral balance model to be sufficient to account for the spectral narrowing in the RDFB laser above the threshold of the generation. © 2014 SPIE.