37 resultados para Qualitative data analysis software
Resumo:
The use of quantitative methods has become increasingly important in the study of neuropathology and especially in neurodegenerative disease. Disorders such as Alzheimer's disease (AD) and the frontotemporal dementias (FTD) are characterized by the formation of discrete, microscopic, pathological lesions which play an important role in pathological diagnosis. This chapter reviews the advantages and limitations of the different methods of quantifying pathological lesions in histological sections including estimates of density, frequency, coverage, and the use of semi-quantitative scores. The sampling strategies by which these quantitative measures can be obtained from histological sections, including plot or quadrat sampling, transect sampling, and point-quarter sampling, are described. In addition, data analysis methods commonly used to analysis quantitative data in neuropathology, including analysis of variance (ANOVA), polynomial curve fitting, multiple regression, classification trees, and principal components analysis (PCA), are discussed. These methods are illustrated with reference to quantitative studies of a variety of neurodegenerative disorders.
Resumo:
DEA literature continues apace but software has lagged behind. This session uses suitably selected data to present newly developed software which includes many of the most recent DEA models. The software enables the user to address a variety of issues not frequently found in existing DEA software such as: -Assessments under a variety of possible assumptions of returns to scale including NIRS and NDRS; -Scale elasticity computations; -Numerous Input/Output variables and truly unlimited number of assessment units (DMUs) -Panel data analysis -Analysis of categorical data (multiple categories) -Malmquist Index and its decompositions -Computations of Supper efficiency -Automated removal of super-efficient outliers under user-specified criteria; -Graphical presentation of results -Integrated statistical tests
Resumo:
INTRODUCTION: Bipolar disorder requires long-term treatment but non-adherence is a common problem. Antipsychotic long-acting injections (LAIs) have been suggested to improve adherence but none are licensed in the UK for bipolar. However, the use of second-generation antipsychotics (SGA) LAIs in bipolar is not uncommon albeit there is a lack of systematic review in this area. This study aims to systematically review safety and efficacy of SGA LAIs in the maintenance treatment of bipolar disorder. METHODS AND ANALYSIS: The protocol is based on Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) and will include only randomised controlled trials comparing SGA LAIs in bipolar. PubMed, EMBASE, CINAHL, Cochrane Library (CENTRAL), PsychINFO, LiLACS, http://www.clinicaltrials.gov will be searched, with no language restriction, from 2000 to January 2016 as first SGA LAIs came to the market after 2000. Manufacturers of SGA LAIs will also be contacted. Primary efficacy outcome is relapse rate or delayed time to relapse or reduction in hospitalisation and primary safety outcomes are drop-out rates, all-cause discontinuation and discontinuation due to adverse events. Qualitative reporting of evidence will be based on 21 items listed on standards for reporting qualitative research (SRQR) focusing on study quality (assessed using the Jadad score, allocation concealment and data analysis), risk of bias and effect size. Publication bias will be assessed using funnel plots. If sufficient data are available meta-analysis will be performed with primary effect size as relative risk presented with 95% CI. Sensitivity analysis, conditional on number of studies and sample size, will be carried out on manic versus depressive symptoms and monotherapy versus adjunctive therapy.
Resumo:
The programme of research examines knowledge workers, their relationships with organisations, and perceptions of management practices through the development of a theoretical model and knowledge worker archetypes. Knowledge worker and non-knowledge worker archetypes were established through an analysis of the extant literature. After an exploratory study of knowledge workers in a small software development company the archetypes were refined to include occupational classification data and the findings from Study 1. The Knowledge Worker Characteristics Model (KWCM) was developed as a theoretical framework in order to analyse differences between the two archetypes within the IT sector. The KWCM comprises of the variables within the job characteristics model, creativity, goal orientation, identification and commitment. In Study 2, a global web based survey was conducted. There were insufficient non-knowledge worker responses and therefore a cluster analysis was conducted to interrogate the archetypes further. This demonstrated, unexpectedly, that that there were marked differences within the knowledge worker archetypes suggesting the need to granulate the archetype further. The theoretical framework and the archetypes were revised (as programmers and web developers) and the research study was refocused to examine occupational differences within knowledge work. Findings from Study 2 identified that there were significant differences between the archetypes in relation to the KWCM. 19 semi-structured interviews were conducted in Study 3 in order to deepen the analysis using qualitative data and to examine perceptions of people management practices. The findings from both studies demonstrate that there were significant differences between the two groups but also that job challenge, problem solving, intrinsic reward and team identification were of importance to both groups of knowledge workers. This thesis presents an examination of knowledge workers’ perceptions of work, organisations and people management practices in the granulation and differentiation of occupational archetypes.
Resumo:
Significance: Oxidized phospholipids are now well-recognized as markers of biological oxidative stress and bioactive molecules with both pro-inflammatory and anti-inflammatory effects. While analytical methods continue to be developed for studies of generic lipid oxidation, mass spectrometry (MS) has underpinned the advances in knowledge of specific oxidized phospholipids by allowing their identification and characterization, and is responsible for the expansion of oxidative lipidomics. Recent Advances: Studies of oxidized phospholipids in biological samples, both from animal models and clinical samples, have been facilitated by the recent improvements in MS, especially targeted routines that depend on the fragmentation pattern of the parent molecular ion and improved resolution and mass accuracy. MS can be used to identify selectively individual compounds or groups of compounds with common features, which greatly improves the sensitivity and specificity of detection. Application of these methods have enabled important advances in understanding the mechanisms of inflammatory diseases such as atherosclerosis, steatohepatitis, leprosy and cystic fibrosis, and offer potential for developing biomarkers of molecular aspects of the diseases. Critical Issues and Future Directions: The future in this field will depend on development of improved MS technologies, such as ion mobility, novel enrichment methods and databases and software for data analysis, owing to the very large amount of data generated in these experiments. Imaging of oxidized phospholipids in tissue MS is an additional exciting direction emerging that can be expected to advance understanding of physiology and disease.
Resumo:
Diabetes patients might suffer from an unhealthy life, long-term treatment and chronic complicated diseases. The decreasing hospitalization rate is a crucial problem for health care centers. This study combines the bagging method with base classifier decision tree and costs-sensitive analysis for diabetes patients' classification purpose. Real patients' data collected from a regional hospital in Thailand were analyzed. The relevance factors were selected and used to construct base classifier decision tree models to classify diabetes and non-diabetes patients. The bagging method was then applied to improve accuracy. Finally, asymmetric classification cost matrices were used to give more alternative models for diabetes data analysis.
Resumo:
Introduction: There is increasing evidence that electronic prescribing (ePrescribing) or computerised provider/physician order entry (CPOE) systems can improve the quality and safety of healthcare services. However, it has also become clear that their implementation is not straightforward and may create unintended or undesired consequences once in use. In this context, qualitative approaches have been particularly useful and their interpretative synthesis could make an important and timely contribution to the field. This review will aim to identify, appraise and synthesise qualitative studies on ePrescribing/CPOE in hospital settings, with or without clinical decision support. Methods and analysis: Data sources will include the following bibliographic databases: MEDLINE, MEDLINE In Process, EMBASE, PsycINFO, Social Policy and Practice via Ovid, CINAHL via EBSCO, The Cochrane Library (CDSR, DARE and CENTRAL databases), Nursing and Allied Health Sources, Applied Social Sciences Index and Abstracts via ProQuest and SCOPUS. In addition, other sources will be searched for ongoing studies (ClinicalTrials.gov) and grey literature: Healthcare Management Information Consortium, Conference Proceedings Citation Index (Web of Science) and Sociological abstracts. Studies will be independently screened for eligibility by 2 reviewers. Qualitative studies, either standalone or in the context of mixed-methods designs, reporting the perspectives of any actors involved in the implementation, management and use of ePrescribing/CPOE systems in hospital-based care settings will be included. Data extraction will be conducted by 2 reviewers using a piloted form. Quality appraisal will be based on criteria from the Critical Appraisal Skills Programme checklist and Standards for Reporting Qualitative Research. Studies will not be excluded based on quality assessment. A postsynthesis sensitivity analysis will be undertaken. Data analysis will follow the thematic synthesis method. Ethics and dissemination: The study does not require ethical approval as primary data will not be collected. The results of the study will be published in a peer-reviewed journal and presented at relevant conferences.