45 resultados para Pyrophosphate phosphofructose 1-kinase
Resumo:
Inhibition of dsRNA-activated protein kinase (PKR), not only attenuates muscle atrophy in a murine model of cancer cachexia (MAC16), but it also inhibits tumour growth. In vitro the PKR inhibitor maximally inhibited growth of MAC16 tumour cells at a concentration of 200 nM, which was also maximally effective in attenuating phosphorylation of PKR and of eukaryotic initiation factor (eIF)2 on the a-subunit. There was no effect on the growth of the MAC13 tumour, which does not induce cachexia, even at concentrations up to 1,000 nM. There was constitutive phosphorylation of PKR and eIF2a in the MAC16, but not in the MAC13 tumour, while levels of total PKR and eIF2a were similar. There was constitutive upregulation of nuclear factor-?B (NF-?B) in the MAC16 tumour only, and this was attenuated by the PKR inhibitor, suggesting that it arose from activation of PKR. In MAC16 alone the PKR inhibitor also attenuated expression of the 20S proteasome. The PKR inhibitor potentiated the cytotoxicity of both 5-fluorouracil and gemcitabine to MAC16 cells in vitro. These results suggest that inhibitors of PKR may be useful therapeutic agents against tumours showing increased expression of PKR and constitutive activation of NF-?B, and may also prove useful in sensitising tumours to standard chemotherapeutic agents.
Resumo:
Atrophy of skeletal muscle is due to a depression in protein synthesis and an increase in degradation. Studies in vitro have suggested that activation of the dsRNA-dependent protein kinase (PKR) may be responsible for these changes in protein synthesis and degradation. In order to evaluate whether this is also applicable to cancer cachexia the action of a PKR inhibitor on the development of cachexia has been studied in mice bearing the MAC16 tumour. Treatment of animals with the PKR inhibitor (5 mg kg-1) significantly reduced levels of phospho-PKR in muscle down to that found in non-tumour-bearing mice, and effectively attenuated the depression of body weight, with increased muscle mass, and also inhibited tumour growth. There was an increase in protein synthesis in skeletal muscle, which paralleled a decrease in eukaryotic initiation factor 2α phosphorylation. Protein degradation rates in skeletal muscle were also significantly decreased, as was proteasome activity levels and expression. Myosin levels were increased up to values found in non-tumour-bearing animals. Proteasome expression correlated with a decreased nuclear accumulation of nuclear factor-κB (NF-κB). The PKR inhibitor also significantly inhibited tumour growth, although this appeared to be a separate event from the effect on muscle wasting. These results suggest that inhibition of the autophosphorylation of PKR may represent an appropriate target for the attenuation of muscle atrophy in cancer cachexia. © 2007 Cancer Research UK.
Resumo:
It is well established that adenosine receptors are involved in cardioprotection and that protein kinase B (PKB) is associated with cell survival. Therefore, in this study we have investigated whether adenosine receptors (A1, A2A and A3) activate PKB by Western blotting and determined the involvement of phosphatidylinositol 3-kinase (PI-3K)/PKB in adenosine-induced preconditioning in cultured newborn rat cardiomyocytes. Adenosine (non-selective agonist), CPA (A1 selective agonist) and Cl-IB-MECA (A(3) selective agonist) all increased PKB phosphorylation in a time- and concentration-dependent manner. The combined maximal response to CPA and Cl-IB-MECA was similar to the increase in PKB phosphorylation induced by adenosine alone. CGS 21680 (A2A selective agonist) did not stimulate an increase in PKB phosphorylation. Adenosine, CPA and Cl-IB-MECA-mediated PKB phosphorylation were inhibited by pertussis toxin (PTX blocks G(i)/G(o)-protein), genistein (tyrosine kinase inhibitor), PP2 (Src tyrosine kinase inhibitor) and by the epidermal growth factor (EGF) receptor tyrosine kinase inhibitor AG 1478. The PI-3K inhibitors wortmannin and LY 294002 blocked A(1) and A(3) receptor-mediated PKB phosphorylation. The role of PI-3K/PKB in adenosine-induced preconditioning was assessed by monitoring Caspase 3 activity and lactate dehydrogenase (LDH) release induced by exposure of cardiomyocytes to 4 h hypoxia (0.5% O2) followed by 18 h reoxygenation (HX4/R). Pre-treatment with wortmannin had no significant effect on the ability of adenosine-induced preconditioning to reduce the release of LDH or Caspase 3 activation following HX4/R. In conclusion, we have shown for the first time that adenosine A1 and A3 receptors trigger increases in PKB phosphorylation in rat cardiomyocytes via a G1/G0-protein and tyrosine kinase-dependent pathway. However, the PI-3K/PKB pathway does not appear to be involved in adenosine-induced cardioprotection by preconditioning Adenosine A1 receptor .
Resumo:
Vascular endothelial growth factor-A (VEGF) is critical for angiogenesis but fails to induce neovascularization in ischemic tissue lesions in mice lacking endothelial nitric oxide synthase (eNOS). VEGF receptor-2 (VEGFR-2) is critical for angiogenesis, although little is known about the precise role of endothelial VEGFR-1 and its downstream effectors in this process. Here we have used a chimeric receptor approach in which the extracellular domain of the epidermal growth factor receptor was substituted for that of VEGFR-1 (EGLT) or VEGFR-2 (EGDR) and transduced into primary cultures of human umbilical vein endothelial cells (HUVECs) using a retroviral system. Activation of HUVECs expressing EGLT or EGDR induced rapid phosphorylation of eNOS at Ser1177, release of NO, and formation of capillary networks, similar to VEGF. Activation of eNOS by VEGFR-1 was dependent on Tyr794 and was mediated via phosphatidylinositol 3-kinase, whereas VEGFR-2 Tyr951 was involved in eNOS activation via phospholipase Cgamma1. Consistent with these findings, the VEGFR-1-specific ligand placenta growth factor-1 activated phosphatidylinositol 3-kinase and VEGF-E, which is selective for VEGFR-2-activated phospholipase Cgamma1. Both VEGFR-1 and VEGFR-2 signal pathways converged on Akt, as dominant-negative Akt inhibited the NO release and in vitro tube formation induced following activation of EGLT and EGDR. The identification Tyr794 of VEGFR-1 as a key residue in this process provides direct evidence of endothelial VEGFR-1 in NO-driven in vitro angiogenesis. These studies provide new sites of modulation in VEGF-mediated vascular morphogenesis and highlight new therapeutic targets for management of vascular diseases.
Resumo:
Dehydroepiandrosterone sulfate (DHEAS) is the most abundant steroid in the human circulation and is secreted by the adrenals in an age-dependent fashion, with maximum levels during the third decade and very low levels in old age. DHEAS is considered an inactive metabolite, whereas cleavage of the sulfate group generates dehydroepiandrosterone (DHEA), a crucial sex steroid precursor. However, here we show that DHEAS, but not DHEA, increases superoxide generation in primed human neutrophils in a dose-dependent fashion, thereby impacting on a key bactericidal mechanism. This effect was not prevented by coincubation with androgen and estrogen receptor antagonists but was reversed by the protein kinase C inhibitor Bisindolylmaleimide 1. Moreover, we found that neutrophils are unique among leukocytes in expressing an organic anion-transporting polypeptide D, able to mediate active DHEAS influx transport whereas they did not express steroid sulfatase that activates DHEAS to DHEA. A specific receptor for DHEAS has not yet been identified, but we show that DHEAS directly activated recombinant protein kinase C-ß (PKC-ß) in a cell-free assay. Enhanced PKC-ß activation by DHEAS resulted in increased phosphorylation of p47phox, a crucial component of the active reduced nicotinamide adenine dinucleotide phosphate complex responsible for neutrophil superoxide generation. Our results demonstrate that PKC-ß acts as an intracellular receptor for DHEAS in human neutrophils, a signaling mechanism entirely distinct from the role of DHEA as sex steroid precursor and with important implications for immunesenescence, which includes reduced neutrophil superoxide generation in response to pathogens.
Resumo:
Anaplasma phagocytophilum, a Gram-negative, obligate intracellular bacterium infects primarily neutrophil granulocytes. Infection with A. phagocytophilum leads to inhibition of neutrophil apoptosis and consequently contributes to the longevity of the host cells. Previous studies demonstrated that the infection inhibits the executionary apoptotic machinery in neutrophils. However, little attempt has been made to explore which survival signals are modulated by the pathogen. The aim of the present study was to clarify whether the phosphatidylinositol 3-kinase (PI3K)/Akt and NF-?B signaling pathways, which are considered as important survival pathways in neutrophils, are involved in A. phagocytophilum-induced apoptosis delay. Our data show that infection of neutrophils with A. phagocytophilum activates the PI3K/Akt pathway and suggest that this pathway, which in turn maintains the expression of the antiapoptotic protein Mcl-1, contributes to the infection-induced apoptosis delay. In addition, the PI3K/Akt pathway is involved in the activation of NF-?B in A. phagocytophilum-infected neutrophils. Activation of NF-?B leads to the release of interleukin-8 (IL-8) from infected neutrophils, which, in an autocrine manner, delays neutrophil apoptosis. In addition, enhanced expression of the antiapoptotic protein cIAP2 was observed in A. phagocytophilum-infected neutrophils. Taken together, the data indicate that upstream of the apoptotic cascade, signaling via the PI3K/Akt pathway plays a major role for apoptosis delay in A. phagocytophilum-infected neutrophils.
Resumo:
Angiopoietin-1 (Ang-1) is an angiogenic growth factor that activates Tie-2 and integrins to promote vessel wall remodeling. The recent finding of the potential proatherogenic effects of Ang-1 prompted us to investigate whether Ang-1 promotes monocyte chemotaxis, endothelial binding, and transendothelial migration, key events in the progression of atherosclerosis. Here, we show that Ang-1 induces chemotaxis of monocytes in a manner that is independent of Tie-2 and integrin binding but dependent on phosphoinositide 3-kinase and heparin. In addition, Ang-1 promoted phosphoinositide 3-kinase-dependent binding of monocytes to endothelial monolayers and stimulated transendothelial migration. Fluorescence-activated cell sorting analysis showed that exogenous Ang-1 adheres directly to monocytes as well as to human umbilical endothelial cells, but neither Tie-2 mRNA nor protein were expressed by primary monocytes. Although Ang-1 binding to human umbilical endothelial cells was partially Tie-2 and integrin dependent, Ang-1 binding to monocytes was independent of these factors. Finally, preincubation of monocytes with soluble heparin abrogated Ang-1 binding to monocytes and migration, and partially prevented Ang-1 binding to human umbilical endothelial cells. In summary, Ang-1 induces chemotaxis of monocytes by a mechanism that is dependent on phosphoinositide 3-kinase and heparin but independent of Tie-2 and integrins. The ability of Ang-1 to recruit monocytes suggests it may play a role in inflammatory angiogenesis and may promote atherosclerosis.
Resumo:
The proteinase-activated receptor 2 (PAR-2) expression is increased in endothelial cells derived from women with preeclampsia, characterized by widespread maternal endothelial damage, which occurs as a consequence of elevated soluble vascular endothelial growth factor receptor-1 (sVEGFR-1; commonly known as sFlt-1) in the maternal circulation. Because PAR-2 is upregulated by proinflammatory cytokines and activated by blood coagulation serine proteinases, we investigated whether activation of PAR-2 contributed to sVEGFR-1 release. PAR-2–activating peptides (SLIGRL-NH2 and 2-furoyl-LIGRLO-NH2) and factor Xa increased the expression and release of sVEGFR-1 from human umbilical vein endothelial cells. Enzyme-specific, dominant-negative mutants and small interfering RNA were used to demonstrate that PAR-2–mediated sVEGFR-1 release depended on protein kinase C-ß1 and protein kinase C-e, which required intracellular transactivation of epidermal growth factor receptor 1, leading to mitogen-activated protein kinase activation. Overexpression of heme oxygenase 1 and its gaseous product, carbon monoxide, decreased PAR-2–stimulated sVEGFR-1 release from human umbilical vein endothelial cells. Simvastatin, which upregulates heme oxygenase 1, also suppressed PAR-2–mediated sVEGFR-1 release. These results show that endothelial PAR-2 activation leading to increased sVEGFR-1 release may contribute to the maternal vascular dysfunction observed in preeclampsia and highlights the PAR-2 pathway as a potential therapeutic target for the treatment of preeclampsia.
Resumo:
S-glutathionylation occurs when reactive oxygen or nitrogen species react with protein-cysteine thiols. Glutaredoxin-1 (Glrx) is a cytosolic enzyme which enzymatically catalyses the reduction in S-glutathionylation, conferring reversible signalling function to proteins with redox-sensitive thiols. Glrx can regulate vascular hypertrophy and inflammation by regulating the activity of nuclear factor κB (NF-κB) and actin polymerization. Vascular endothelial growth factor (VEGF)-induced endothelial cell (EC) migration is inhibited by Glrx overexpression. In mice overexpressing Glrx, blood flow recovery, exercise function and capillary density were significantly attenuated after hindlimb ischaemia (HLI). Wnt5a and soluble Fms-like tyrosine kinase-1 (sFlt-1) were enhanced in the ischaemic-limb muscle and plasma respectively from Glrx transgenic (TG) mice. A Wnt5a/sFlt-1 pathway had been described in myeloid cells controlling retinal blood vessel development. Interestingly, a Wnt5a/sFlt-1 pathway was found also to play a role in EC to inhibit network formation. S-glutathionylation of NF-κB components inhibits its activation. Up-regulated Glrx stimulated the Wnt5a/sFlt-1 pathway through enhancing NF-κB signalling. These studies show a novel role for Glrx in post-ischaemic neovascularization, which could define a potential target for therapy of impaired angiogenesis in pathological conditions including diabetes.
Resumo:
d-Myo-inositol 1,2,6-triphosphate (alpha trinositol, AT) has been shown to attenuate muscle atrophy in a murine cachexia model through an increase in protein synthesis and a decrease in degradation. The mechanism of this effect has been investigated in murine myotubes using a range of catabolic stimuli, including proteolysis-inducing factor (PIF), angiotensin II (Ang II), lipopolysaccharide, and tumor necrosis factor-α/interferon-γ. At a concentration of 100 μM AT was found to attenuate both the induction of protein degradation and depression of protein synthesis in response to all stimuli. The effect on protein degradation was accompanied by attenuation of the increased expression and activity of the ubiquitin-proteasome pathway. This suggests that AT inhibits a signalling step common to all four agents. This target has been shown to be activation (autophosphorylation) of the dsRNA-dependent protein kinase (PKR) and the subsequent phosphorylation of eukaryotic initiation factor 2 on the α-subunit, together with downstream signalling pathways leading to protein degradation. AT also inhibited activation of caspase-3/-8, which is thought to lead to activation of PKR. The mechanism of this effect may be related to the ability of AT to chelate divalent metal ions, since the attenuation of the increased activity of the ubiquitin-proteasome pathway by PIF and Ang II, as well as the depression of protein synthesis by PIF, were reversed by increasing concentrations of Zn2+. The ability of AT to attenuate muscle atrophy by a range of stimuli suggests that it may be effective in several catabolic conditions. © 2009 Elsevier Inc. All rights reserved.
Resumo:
The glucagon-like peptide-1 receptor (GLP-1R) is a class B G protein-coupled receptor that has a critical role in the regulation of glucose homeostasis, principally through the regulation of insulin secretion. The receptor systemis highly complex, able to be activated by both endogenous [GLP-1(1-36)NH2, GLP-1(1-37), GLP-1(7-36)NH2, GLP-1(7-37), oxyntomodulin], and exogenous (exendin-4) peptides in addition to small-molecule allosteric agonists (compound 2 [6,7-dichloro-2-methylsulfonyl-3-tertbutylaminoquinoxaline], BETP [4-(3-benzyloxy)phenyl)-2-ethylsulfinyl-6-(trifluoromethyl)pyrimidine]). Furthermore, the GLP-1R is subject to single-nucleotide polymorphic variance, resulting in amino acid changes in the receptor protein. In this study, we investigated two polymorphic variants previously reported to impact peptidemediated receptor activity (M149) and small-molecule allostery (C333). These residues were mutated to a series of alternate amino acids, and their functionality was monitored across physiologically significant signaling pathways, including cAMP, extracellular signal-regulated kinase 1 and 2 phosphorylation, and intracellular Ca2+ mobilization, in addition to peptide binding and cell-surface expression. We observed that residue 149 is highly sensitive to mutation, with almost all peptide responses significantly attenuated at mutated receptors. However, most reductions in activity were able to be restored by the small-molecule allosteric agonist compound 2. Conversely, mutation of residue 333 had little impact on peptide-mediated receptor activation, but this activity could not be modulated by compound 2 to the same extent as that observed at the wild-type receptor. These results provide insight into the importance of residues 149 and 333 in peptide function and highlight the complexities of allosteric modulation within this receptor system.
Resumo:
The glucagon-like peptide 1 (GLP-1) receptor is a class B G protein-coupled receptor (GPCR) that is a key target for treatments for type II diabetes and obesity. This receptor, like other class B GPCRs, displays biased agonism, though the physiologic significance of this is yet to be elucidated. Previous work has implicated R2.60190 , N3.43240 , Q7.49394 , and H6.52363 as key residues involved in peptide-mediated biased agonism, with R2.60190 , N3.43240 , and Q7.49394 predicted to form a polar interaction network. In this study, we used novel insight gained from recent crystal structures of the transmembrane domains of the glucagon and corticotropin releasing factor 1 (CRF1) receptors to develop improved models of the GLP-1 receptor that predict additional key molecular interactions with these amino acids. We have introduced E6.53364 A, N3.43240 Q, Q7.49493N, and N3.43240 Q/Q7.49 Q/Q7.49493N mutations to probe the role of predicted H-bonding and charge-charge interactions in driving cAMP, calcium, or extracellular signal-regulated kinase (ERK) signaling. A polar interaction between E6.53364 and R2.60190 was predicted to be important for GLP-1- and exendin-4-, but not oxyntomodulin-mediated cAMP formation and also ERK1/2 phosphorylation. In contrast, Q7.49394 , but not R2.60190 /E6.53364 was critical for calcium mobilization for all three peptides. Mutation of N3.43240 and Q7.49394 had differential effects on individual peptides, providing evidence for molecular differences in activation transition. Collectively, this work expands our understanding of peptide-mediated signaling from the GLP-1 receptor and the key role that the central polar network plays in these events.
Resumo:
The nucleoside diphosphate (NDP) kinase, Nm23H1, is a highly expressed during neuronal development, whilst induced over-expression in neuronal cells results in increased neurite outgrowth. Extracellular Nm23H1 affects the survival, proliferation and differentiation of non-neuronal cells. Therefore, this study has examined whether extracellular Nm23H1 regulates nerve growth. We have immobilised recombinant Nm23H1 proteins to defined locations of culture plates, which were then seeded with explants of embryonic chick dorsal root ganglia (DRG) or dissociated adult rat DRG neurons. The substratum-bound extracellular Nm23H1 was stimulatory for neurite outgrowth from chick DRG explants in a concentration-dependent manner. On high concentrations of Nm23H1, chick DRG neurite outgrowth was extensive and effectively limited to the location of the Nm23H1, i.e. neuronal growth cones turned away from adjacent collagen-coated substrata. Nm23H1-coated substrata also significantly enhanced rat DRG neuronal cell adhesion and neurite outgrowth in comparison to collagen-coated substrata. These effects were independent of NGF supplementation. Recombinant Nm23H1 (H118F), which does not possess NDP kinase activity, exhibited the same activity as the wild-type protein. Hence, a novel neuro-stimulatory activity for extracellular Nm23H1 has been identified in vitro, which may function in developing neuronal systems. © 2010 Elsevier Inc.
Resumo:
Fibrosis is a complication of chronic inflammatory disorders such as inflammatory bowel disease (IBD), a condition which has limited therapeutic options and often requires surgical intervention. Pharmacologic inhibition of oxygen-sensing prolyl hydroxylases (PHD), which confer oxygen-sensitivity upon the hypoxia inducible factor (HIF) pathway, has recently been shown to have therapeutic potential in colitis, although the mechanisms involved remain unclear. Here, we investigated the impact of hydroxylase inhibition on inflammation-driven fibrosis in a murine colitis model. Mice exposed to dextran sodium sulfate followed by period of recovery developed intestinal fibrosis characterized by alterations in the pattern of collagen deposition and infiltration of activated fibroblasts. Treatment with the hydroxylase inhibitor dimethyloxalylglycine (DMOG) ameliorated fibrosis. TGF-β1 is a key regulator of fibrosis which acts through the activation of fibroblasts. Hydroxylase inhibition reduced TGF-β1-induced expression of fibrotic markers in cultured fibroblasts suggesting a direct role for hydroxylases in TGF-β1 signalling. This was at least in part due to inhibition of non-canonical activation of extracellular signal-regulated kinase (ERK) signalling. In summary, pharmacologic hydroxylase inhibition ameliorates intestinal fibrosis, through suppression of TGF-β1-dependent ERK activation in fibroblasts. We hypothesize that in addition to previously reported immunosupressive effects, hydroxylase inhibitors independently suppress pro-fibrotic pathways
Resumo:
Vascular endothelial growth factor (VEGF) signaling is tightly regulated by specific VEGF receptors (VEGF-R). Recently, we identified heterodimerisation between VEGFR-1 and VEGFR-2 (VEGFR1–2) to regulate VEGFR-2 function. However, both the mechanism of action and the relationship with VEGFR-1 homodimers remain unknown. The current study shows that activation of VEGFR1–2, but not VEGFR-1 homodimers, inhibits VEGFR-2 receptor phosphorylation under VEGF stimulation in human endothelial cells. Furthermore, inhibition of phosphatidylinositol 3-kinase (PI3K) increases VEGFR-2 phosphorylation under VEGF stimulation. More importantly, inhibition of PI3K pathway abolishes the VEGFR1–2 mediated inhibition of VEGFR-2 phosphorylation. We further demonstrate that inhibition of PI3K pathway promotes capillary tube formation. Finally, the inhibition of PI3K abrogates the inhibition of in vitro angiogenesis mediated by VEGFR1–2 heterodimers. These findings demonstrate that VEGFR1–2 heterodimers and not VEGFR-1 homodimers inhibit VEGF-VEGFR-2 signaling by suppressing VEGFR-2 phosphorylation via PI3K pathway.