36 resultados para Proton Affinity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantitative structure–activity relationship (QSAR) analysis is a main cornerstone of modern informatic disciplines. Predictive computational models, based on QSAR technology, of peptide-major histocompatibility complex (MHC) binding affinity have now become a vital component of modern day computational immunovaccinology. Historically, such approaches have been built around semi-qualitative, classification methods, but these are now giving way to quantitative regression methods. The additive method, an established immunoinformatics technique for the quantitative prediction of peptide–protein affinity, was used here to identify the sequence dependence of peptide binding specificity for three mouse class I MHC alleles: H2–Db, H2–Kb and H2–Kk. As we show, in terms of reliability the resulting models represent a significant advance on existing methods. They can be used for the accurate prediction of T-cell epitopes and are freely available online (http://www.jenner.ac.uk/MHCPred).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motivation: The immunogenicity of peptides depends on their ability to bind to MHC molecules. MHC binding affinity prediction methods can save significant amounts of experimental work. The class II MHC binding site is open at both ends, making epitope prediction difficult because of the multiple binding ability of long peptides. Results: An iterative self-consistent partial least squares (PLS)-based additive method was applied to a set of 66 pep- tides no longer than 16 amino acids, binding to DRB1*0401. A regression equation containing the quantitative contributions of the amino acids at each of the nine positions was generated. Its predictability was tested using two external test sets which gave r pred =0.593 and r pred=0.655, respectively. Furthermore, it was benchmarked using 25 known T-cell epitopes restricted by DRB1*0401 and we compared our results with four other online predictive methods. The additive method showed the best result finding 24 of the 25 T-cell epitopes. Availability: Peptides used in the study are available from http://www.jenner.ac.uk/JenPep. The PLS method is available commercially in the SYBYL molecular modelling software package. The final model for affinity prediction of peptides binding to DRB1*0401 molecule is available at http://www.jenner.ac.uk/MHCPred. Models developed for DRB1*0101 and DRB1*0701 also are available in MHC- Pred

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We test for departures from normal and independent and identically distributed (NIID) log returns, for log returns under the alternative hypothesis that are self-affine and either long-range dependent, or drawn randomly from an L-stable distribution with infinite higher-order moments. The finite sample performance of estimators of the two forms of self-affinity is explored in a simulation study. In contrast to rescaled range analysis and other conventional estimation methods, the variant of fluctuation analysis that considers finite sample moments only is able to identify both forms of self-affinity. When log returns are self-affine and long-range dependent under the alternative hypothesis, however, rescaled range analysis has higher power than fluctuation analysis. The techniques are illustrated by means of an analysis of the daily log returns for the indices of 11 stock markets of developed countries. Several of the smaller stock markets by capitalization exhibit evidence of long-range dependence in log returns. © 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogen bonds play important roles in maintaining the structure of proteins and in the formation of most biomolecular protein-ligand complexes. All amino acids can act as hydrogen bond donors and acceptors. Among amino acids, Histidine is unique, as it can exist in neutral or positively charged forms within the physiological pH range of 5.0 to 7.0. Histidine can thus interact with other aromatic residues as well as forming hydrogen bonds with polar and charged residues. The ability of His to exchange a proton lies at the heart of many important functional biomolecular interactions, including immunological ones. By using molecular docking and molecular dynamics simulation, we examine the influence of His protonation/deprotonation on peptide binding affinity to MHC class II proteins from locus HLA-DP. Peptide-MHC interaction underlies the adaptive cellular immune response, upon which the next generation of commercially-important vaccines will depend. Consistent with experiment, we find that peptides containing protonated His residues bind better to HLA-DP proteins than those with unprotonated His. Enhanced binding at pH 5.0 is due, in part, to additional hydrogen bonds formed between peptide His+ and DP proteins. In acidic endosomes, protein His79β is predominantly protonated. As a result, the peptide binding cleft narrows in the vicinity of His79β, which stabilizes the peptide - HLA-DP protein complex. © 2014 Bentham Science Publishers.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: