40 resultados para Profit Decomposition
Resumo:
The microstructural stability of aluminide diffusion coatings, prepared by means of a two-stage pack-aluminization treatment on single-crystal nickel-base superalloy substrates, is considered in this article. Edge-on specimens of coated superalloy are studied using transmission electron microscopy (TEM). The effects of coating thickness and post-coating heat treatment (duration, temperature, and atmosphere) on coating microstructure are examined. The article discusses the partial transformation of the matrix of the coating, from a B2-type phase (nominally NiAl) to a L12 phase (nominally Ni3(Al, Ti)), during exposure at temperatures of 850 °C and 950 °C in air and in vacuum for up to 138 hours. Three possible processes that can account for decom- position of the coating matrix are investigated, namely, interdiffusion between the coating and the substrate, oxidation of the coating surface, and aging of the coating. Of these processes, aging of the coating is shown to be the predominant factor in the coating transformation under the conditions considered. © 1992 The Minerals, Metals and Materials Society, and ASM International.
Resumo:
Today's market conditions require nonprofit leaders to act in an increasingly business-like fashion. This study asks whether NPO leaders have a similar disposition to act entrepreneurially as for-profit entrepreneurs, but hold different underlying motives. For this purpose, the study contrasts a sample of 72 leaders of nonprofit organizations with 117 entrepreneurs on their personality traits and explicit motives using standard personality tests and interviews. Both groups exhibit similar general and entrepreneurship-specific personality traits but differ significantly regarding their motivation. While nonprofit leaders' motivation stems primarily from the meaningfulness of their work; entrepreneurs are mainly motivated by the independence as well as by the income and profit provided by their work. This paper helps us understand who leaders of nonprofit organizations are.
Resumo:
SO2 oxidation has been followed by Fast XPS over Pt{111}. Preadsorbed oxygen reduces the low temperature saturation coverage of SO2 with respect to the clean surface. Heating a mixed O2/SO2 adlayer results in efficient oxidation of both upright and flat-lying SO2 molecules to surface-bound SO4. Sulphate decomposes above room temperature liberating gas-phase SO2 and SO3. Propene adsorbs molecularly at 100 K over clean Pt{111} and dehydrogenates above 250 K to form a stable propylidyne adlayer, which in turn decomposes above 400 K to form graphitic carbon. Preadsorbed surface sulphate enhances the sticking probability of propene via formation of an alkyl-sulphate complex. Thermal decomposition of this complex accounts for low temperature propene combustion and is accompanied by atomic sulpur deposition. Propylidyne forms as on clean Pt but is less reactive undergoing partial oxidation above 450 K with residual surface oxygen.
Resumo:
The thermal decomposition of propene over clean and sulphate precovered Pt{111} has been followed by Fast XPS. The saturation propene coverage over the clean surface is 0.21 mL at 90 K. Propene is stable up to 200 K, above which molecular desorption and dehydrogenation result in the formation of a stable propylidyne intermediate adlayer at 300 K. Propylidyne decomposes above 400 K eventually forming graphitic carbon above 800 K. Preadsorbed surface sulphate promotes room temperature propene combustion associated with the decomposition of a thermally unstable alkyl--sulphate complex. Propylidyne also forms as on clean Pt{111}, but is less reactive, its decomposition above 450 K triggering partial oxidation with residual surface oxygen to liberate gas phase CO.
Resumo:
Desalination plants could become net absorbers (rather than net emitters) of CO2. Thermal decomposition of salts in desalination reject brine can yield MgO which, added to the ocean, would take up CO2 through conversion to bicarbonate. The process proposed here comprises dewatering of brine followed by decomposition in a solar receiver using a heliostat field.
Resumo:
This paper is motivated by the recent debate on the existence and scale of China's 'Guo Jin Min Tui' phenomenon, which is often translated as 'the state sector advances and the private sector retreats'. We argue that the profound implication of an advancing state sector is not the size expansion of the state ownership in the economy per se, but the likely retardation of the development of the already financially constrained private sector and the issues around the sustainability of the already weakening Chinese economy growth. Drawing on recent methodological advances, we provide a critical analysis of the contributions of the state and non-state sectors in the aggregate Total Factor Productivity and its growth over the period of 1998-2007 to verify the existence of GJMT and its possible impacts on Chinese economic growth. Overall, we find strong and consistent evidence of a systematic and worsening resource misallocation within the state sector and/or between the state sectors and private sectors over time. This suggests that non-market forces allow resources to be driven away from their competitive market allocation and towards the inefficient state sector. Crown Copyright © 2014.
Resumo:
This paper aims to analyse the impact of regulation in the financial performance of the Water and Sewerage companies (WaSCs) in England and Wales over the period 1991–2008. In doing so, a panel index approach is applied across WaSCs over time to decompose unit-specific index number-based profitability growth as a function of the profitability, productivity and price performance growth achieved by benchmark firms, and the catch up to the benchmark firm achieved by less productive firms. The results indicated that after 2000 there is a steady decline in average price performance, while productivity improves resulting in a relatively stable economic profitability. It is suggested that the English and Welsh water regulator is now more focused on passing productivity benefits to consumers, and maintaining stable profitability than it was in earlier regulatory periods. This technique is of great interest for regulators to evaluate the effectiveness of regulation and companies to identify the determinants of profit change and improve future performance, even if sample sizes are limited.
Resumo:
Iridium nanoparticles deposited on a variety of surfaces exhibited thermal sintering characteristics that were very strongly correlated with the lability of lattice oxygen in the supporting oxide materials. Specifically, the higher the lability of oxygen ions in the support, the greater the resistance of the nanoparticles to sintering in an oxidative environment. Thus with γ-Al2O3 as the support, rapid and extensive sintering occurred. In striking contrast, when supported on gadolinia-ceria and alumina-ceria-zirconia composite, the Ir nanoparticles underwent negligible sintering. In keeping with this trend, the behavior found with yttria-stabilized zirconia was an intermediate between the two extremes. This resistance, or lack of resistance, to sintering is considered in terms of oxygen spillover from support to nanoparticles and discussed with respect to the alternative mechanisms of Ostwald ripening versus nanoparticle diffusion. Activity towards the decomposition of N2O, a reaction that displays pronounced sensitivity to catalyst particle size (large particles more active than small particles), was used to confirm that catalytic behavior was consistent with the independently measured sintering characteristics. It was found that the nanoparticle active phase was Ir oxide, which is metallic, possibly present as a capping layer. Moreover, observed turnover frequencies indicated that catalyst-support interactions were important in the cases of the sinter-resistant systems, an effect that may itself be linked to the phenomena that gave rise to materials with a strong resistance to nanoparticle sintering.
Resumo:
Power converters are a key, but vulnerable component in switched reluctance motor (SRM) drives. In this paper, a new fault diagnosis scheme for SRM converters is proposed based on the wavelet packet decomposition (WPD) with a dc-link current sensor. Open- and short-circuit faults of the power switches in an asymmetrical half-bridge converter are analyzed in details. In order to obtain the fault signature from the phase currents, two pulse-width modulation signals with phase shift are injected into the lower-switches of the converter to extract the excitation current, and the WPD algorithm is then applied to the detected currents for fault diagnosis. Moreover, a discrete degree of the wavelet packet node energy is chosen as the fault coefficient. The converter faults can be diagnosed and located directly by determining the changes in the discrete degree from the detected currents. The proposed scheme requires only one current sensor in the dc link, while conventional methods need one sensor for each phase or additional detection circuits. The experimental results on a 750-W three-phase SRM are presented to confirm the effectiveness of the proposed fault diagnosis scheme.
Resumo:
A novel route to prepare highly active and stable N2O decomposition catalysts is presented, based on Fe-exchanged beta zeolite. The procedure consists of liquid phase Fe(III) exchange at low pH. By varying the pH systematically from 3.5 to 0, using nitric acid during each Fe(III)-exchange procedure, the degree of dealumination was controlled, verified by ICP and NMR. Dealumination changes the presence of neighbouring octahedral Al sites of the Fe sites, improving the performance for this reaction. The so-obtained catalysts exhibit a remarkable enhancement in activity, for an optimal pH of 1. Further optimization by increasing the Fe content is possible. The optimal formulation showed good conversion levels, comparable to a benchmark Fe-ferrierite catalyst. The catalyst stability under tail gas conditions containing NO, O2 and H2O was excellent, without any appreciable activity decay during 70 h time on stream. Based on characterisation and data analysis from ICP, single pulse excitation NMR, MQ MAS NMR, N2 physisorption, TPR(H2) analysis and apparent activation energies, the improved catalytic performance is attributed to an increased concentration of active sites. Temperature programmed reduction experiments reveal significant changes in the Fe(III) reducibility pattern with the presence of two reduction peaks; tentatively attributed to the interaction of the Fe-oxo species with electron withdrawing extraframework AlO6 species, causing a delayed reduction. A low-temperature peak is attributed to Fe-species exchanged on zeolitic AlO4 sites, which are partially charged by the presence of the neighbouring extraframework AlO6 sites. Improved mass transport phenomena due to acid leaching is ruled out. The increased activity is rationalized by an active site model, whose concentration increases by selectively washing out the distorted extraframework AlO6 species under acidic (optimal) conditions, liberating active Fe species.