55 resultados para Poly(styrene-co-divinylbenzene) microspheres


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Post-operative infections resulting from total hip arthroplasty are caused by bacteria such as Staphylococcus aureus and Pseudomonas aeruginosa entering the wound perioperatively or by haemetogenous spread from distant loci of infection. They can endanger patient health and require expensive surgical revision procedures. Gentamicin impregnated poly (methyl methacrylate) bone cement is traditionally used for treatment but is often removed due to harbouring bacterial growth, while bacterial resistance to gentamicin is increasing. The aim of this work was to encapsulate the antibiotics vancomycin, ciprofloxacin and rifampicin within sustained release microspheres composed of the biodegradable polymer poly (dl-lactide-co-glycolide) [PLCG] 75:25. Topical administration to the wound in hydroxypropylmethylcellulose gel should achieve high local antibiotic concentrations while the two week in vivo half life of PLCG 75:25 removes the need for expensive surgical retrieval operations. Unloaded and 20% w/w antibiotic loaded PLCG 75:25 microspheres were fabricated using a Water in Oil emulsification with solvent evaporation technique. Microspheres were spherical in shape with a honeycomb-like internal matrix and showed reproducible physical properties. The kinetics of in vitro antibiotic release into newborn calf serum (NCS) and Hank's balanced salt solution (HBSS) at 37°C were measured using a radial diffusion assay. Generally, the day to day concentration of each antibiotic released into NCS over a 30 day period was in excess of that required to kill St. aureus and Ps. auruginosa. Only limited microsphere biodegradation had occurred after 30 days of in vitro incubation in NCS and HBSS at 37°C. The moderate in vitro cytotoxicity of 20% w/w antibiotic loaded microspheres to cultured 3T3-L1 cells was antibiotic induced. In conclusion, generated data indicate the potential for 20% w/w antibiotic loaded microspheres to improve the present treatment regimens for infections occurring after total hip arthroplasty such that future work should focus on gaining industrial collaboration for commercial exploitation.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The efficient transport of micron-sized beads into cells, via a non-endocytosis mediated mechanism, has only recently been described. As such there is considerable scope for optimization and exploitation of this procedure to enable imaging and sensing applications to be realized. Herein, we report the design, synthesis and characterization of fluorescent microsphere-based cellular delivery agents that can also carry biological cargoes. These core-shell polymer microspheres possess two distinct chemical environments; the core is hydrophobic and can be labeled with fluorescent dye, to permit visual tracking of the microsphere during and after cellular delivery, whilst the outer shell renders the external surfaces of the microspheres hydrophilic, thus facilitating both bioconjugation and cellular compatibility. Cross-linked core particles were prepared in a dispersion polymerization reaction employing styrene, divinylbenzene and a thiol-functionalized co-monomer. These core particles were then shelled in a seeded emulsion polymerization reaction, employing styrene, divinylbenzene and methacrylic acid, to generate orthogonally functionalized core-shell microspheres which were internally labeled via the core thiol moieties through reaction with a thiol reactive dye (DY630-maleimide). Following internal labeling, bioconjugation of green fluorescent protein (GFP) to their carboxyl-functionalized surfaces was successfully accomplished using standard coupling protocols. The resultant dual-labeled microspheres were visualized by both of the fully resolvable fluorescence emissions of their cores (DY630) and shells (GFP). In vitro cellular uptake of these microspheres by HeLa cells was demonstrated conventionally by fluorescence-based flow cytometry, whilst MTT assays demonstrated that 92% of HeLa cells remained viable after uptake. Due to their size and surface functionalities, these far-red-labeled microspheres are ideal candidates for in vitro, cellular delivery of proteins, as described in the accompanying paper.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ability of liposomes and microspheres to enhance the efficacy of a sub-unit antigen was investigated. Microspheres were optimised by testing a range of surfactants employed in the external aqueous phase of a water-in-oil-in-water (w/o/w) double emulsion solvent evaporation process for the preparation of microspherescomposed of poly(d,l-lactide-co-glycolide) and the immunological adjuvant dimethyl dioctadecyl ammonium bromide (DDA)and then investigated with regard to the physico-chemical and immunological characteristics of the particles produced. The results demonstrate that this parameter can affect the physico-chemical characteristics of these systems and subsequently, has a substantial bearing on the level of immune response achieved, both humoural and cell mediated, when employed for the delivery of the sub-unit tuberculosis vaccine antigen Ag85B-ESAT-6. Moreover, the microsphere preparations investigated failed to initiate immune responses at the levels achieved with an adjuvant DDA-based liposome formulation (DDA-TDB), further substantiating the superior ability of liposomes as vaccine delivery systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this project, antigen-containing microspheres were produced using a range of biodegradable polymers by single and double emulsion solvent evaporation and spray drying techniques. The proteins used in this study were mainly BSA, tetanus toxoid, F1 and V, Y. pestis subunit vaccines and the cytokine, interferon-gamma. The polymer chosen for use in the vaccine preparation will directly determine the characteristics of the formulation. Full in vitro analysis of the preparations was carried out, including surface hydrophobicity and drug release profiles. The influence of the surfactants employed on microsphere surface hydrophobicity was demonstrated. Preparations produced with polyhydroxybutyrate and poly(DTH carbonate) polymers were also shown to be more hydrophobic than PLA microspheres, which may enhance particle uptake by antigen presenting cells and Peyer's patches. Systematic immunisation with microspheres with a range of properties showed differences in the time course and extent of the immune response generated, which would allow optimisation of the dosing schedule to provide maximal response in a single dose preparation. Both systematic and mucosal responses were induced following oral delivery of microencapsulated tetanus toxoid indicating that the encapsulation of the antigen into a microsphere preparation provides protection in the gut and allows targeting of the mucosal-associated lymphoid tissue. Co-encapsulation of adjuvants for further enhancement of immune response was also carried out and the effect on loading and release pattern assessed. Co-encapsulated F1 and interferon-gamma was administered i.p. and the immune responses compared with singly encapsulated and free subunit antigen.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Initial work focused on the preparation, optimisation and characterisation of poly (D,L-lactide) (PLA) microspheres with the aim of optimising their formulation based on minimizing the particle size into the range suitable for pulmonary delivery to alveoli. In order to produce dry powders and to enhance their long-term physico-chemical stability, microspheres were prepared as a dry powder via freeze-drying. Optimisation studies showed that using appropriate concentrations of polymer 3% (w/v) in organic phase and emulsifier 10% (w/v) in external aqueous phase, the double solvent evaporation method produced high protein loading microspheres (72 ± 0.5%) with an appropriate particle size for pulmonary drug delivery. Combined use of trehalose and leucine as cyroprotectants (6% and 1% respectively, w/v) produced freeze-dried powders with the best aerosolisation profile among those tested. Although the freeze-dried PLA microsphere powders were not particularly respirable in dry powder inhalation, nebulisation of the rehydrated powders using an ultrasonic nebuliser resulted in improved aerosilisation performance compared to the air-jet nebuliser. When tested in vitro using a macrophage cell line, the PLA microspheres system exhibited a low cytotoxicity and the microspheres induced phagocytic activity in macrophages. However, interestingly, the addition of an immunomodulator to the microsphere formulations (4%, w/w of polymer) reduced this phagocytic activity and macrophage activation compared to microspheres formulated using PLA alone. This suggested that the addition of trehalose dibehenate may not enhance the ability of these microspheres to be used as vaccine delivery systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of organically modified clay on the morphology, rheology and mechanical properties of high-density polyethylene (HDPE) and polyamide 6 (PA6) blends (HDPE/PA6 = 75/25 parts) is studied. Virgin and filled blends were prepared by melt compounding the constituents using a twin-screw extruder. The influence of the organoclay on the morphology of the hybrid was deeply investigated by means of wide-angle X-ray diffractometry, transmission and scanning electron microscopies and quantitative extraction experiments. It has been found that the organoclay exclusively places inside the more hydrophilic polyamide phase during the melt compounding. The extrusion process promotes the formation of highly elongated and separated organoclay-rich PA6 domains. Despite its low volume fraction, the filled minor phase eventually merges once the extruded pellets are melted again, giving rise to a co-continuous microstructure. Remarkably, such a morphology persists for long time in the melt state. A possible compatibilizing action related to the organoclay has been investigated by comparing the morphology of the hybrid blend with that of a blend compatibilized using an ethylene–acrylic acid (EAA) copolymer as a compatibilizer precursor. The former remains phase separated, indicating that the filler does not promote the enhancement of the interfacial adhesion. The macroscopic properties of the hybrid blend were interpreted in the light of its morphology. The melt state dynamics of the materials were probed by means of linear viscoelastic measurements. Many peculiar rheological features of polymer-layered silicate nanocomposites based on single polymer matrix were detected for the hybrid blend. The results have been interpreted proposing the existence of two distinct populations of dynamical species: HDPE not interacting with the filler, and a slower species, constituted by the organoclay-rich polyamide phase, which slackened dynamics stabilize the morphology in the melt state. In the solid state, both the reinforcement effect of the filler and the co-continuous microstructure promote the enhancement of the tensile modulus. Our results demonstrate that adding nanoparticles to polymer blends allows tailoring the final properties of the hybrid, potentially leading to high-performance materials which combine the advantages of polymer blends and the merits of polymer nanocomposites.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ethylene-propylene diene terpolymer (EPDM) was functionalized with glycidyl methacrylate (GMA) during melt processing by free radical grafting with peroxide initiation in the presence and absence of a reactive comonomer trimethylolpropane triacrylate (Tris). Increasing the peroxide concentration resulted in an increase in the GMA grafting yield, albeit the overall grafting level was low and was accompanied by higher degree of crosslinking of EPDM which was found to be the major competing reaction. The presence of Tris in the grafting system gave rise to higher grafting yield produced at a much lower peroxide concentration though the crosslinking reactions remained high but without the formation of GMA-homopolymer in either of the two systems. The use of these functionalized EPDM (f-EPDM) samples with PET as compatibilisers in binary and ternary blends of PET/EPDM/f-EPDM was evaluated. The influence of the different functionalisation routes of the rubber phase (in presence and absence of Tris) and the effect of the level of functionality and microstructure of the resultant f-EPDM on the extent of the interfacial reaction, morphology and mechanical properties was also investigated. It is suggested that the mechanical properties of the blends are strongly influenced by the performance of the graft copolymer, which is in turn, determined by the level of functionality, molecular structure of the functionalized rubber and the interfacial concentration of the graft copolymer across the interface. The cumulative evidence obtained from torque rheometry, scanning electron microscopy, SEM, dynamic mechanical analysis (DMA), tensile mechanical tests and Fourier transform infrared (FTIR) supports this. It was shown that binary and ternary blends prepared with f-EPDM in the absence of Tris and containing lower levels of g-GMA effected a significant improvement in mechanical properties. This increase, particularly in elongation to break, could be accounted for by the occurrence of a reaction between the epoxy groups of GMA and the hydroxyl/carboxyl end groups of PET that would result in a graft copolymer which could, most probably, preferentially locate at the interface, thereby acting as an 'emulsifier' responsible for decreasing the interfacial tension between the otherwise two immiscible phases. This is supported by results from FTIR analysis of the fractionated PET phase of these blends which confirm the formation of an interfacial reaction, DMA results which show a clear shift in the T s of the blend components and SEM results which reveal very fine morphology, suggesting effective compatibilisation that is concomitant with the improvement observed in their tensile properties. Although Tris has given rise to highest amount of g-GMA, it resulted in lower mechanical properties than the optimized blends produced in the absence of Tris. This was attributed to the difference in the microstructure of the graft and the level of functionality in these samples resulting in less favourable structure responsible for the coarser dispersion of the rubber phase observed by SEM, the lower extent of T shift of the PET phase (DMA), the lower height of the torque curve during reactive blending and FTIR analysis of the separated PET phase that has indicated a lower extent of the interfacial chemical reaction between the phases in this Tris-containing blend sample. © 2005 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Poly(L-lactide-co-ε-caprolactone) 75:25% mol, P(LL-co-CL), was synthesized via bulk ring-opening polymerisation (ROP) using a novel tin(II)alkoxide initiator, [Sn(Oct)]2DEG, at 130oC for 48 hrs. The effectiveness of this initiator was compared withthe well-known conventional tin(II) octoateinitiator, Sn(Oct)2. The P(LL-co-CL) copolymersobtained were characterized using a combination of analytical technique including: nuclear magnetic resonance spectroscopy (NMR), differential scanning calorimetry (DSC), thermogravimetry (TG) and gel permeation chromatography (GPC). The P(LL-co-CL) was melt-spun into monofilament fibres of uniform diameter and smooth surface appearance. Modification of the matrix morphology was then built into the as-spun fibresvia a series of controlled off-line annealing and hot-drawing steps. © (2014) Trans Tech Publications, Switzerland.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The controlled synthesis of poly(neopentyl p-styrene sulfonate) (PNSS) using RAFT polymerisation has been studied. Selected experimental conditions led to the production of PNSS with variable molecular weights and low dispersities (D{stroke}≤1.50). The controlled synthesis of poly(neopentyl p-styrene sulfonate) (PNSS) using reversible addition-fragmentation chain transfer polymerisation has been studied under a wide range of experimental conditions. PNSS can be used as an organic-soluble, thermally labile precursor for industrially valuable poly(p-styrene sulfonate), widely employed in technologies such as ionic exchange membranes and organic electronics. The suitability of two different chain transfer agents, three solvents, three different monomer concentrations and two different temperatures for the polymerisation of neopentyl p-styrene sulfonate is discussed in terms of the kinetics of the process and characteristics of the final polymer. Production of PNSS with systematically variable molecular weights and low dispersities (D{stroke} ≤1.50 in all cases) has been achieved using 2-azidoethyl 2-(dodecylthiocarbonothioylthio)-2-methylpropionate in anisole at 75°C, with an initial monomer concentration of 4.0molL-1. Finally, a poly(neopentyl p-styrene sulfonate)-b-polybutadiene-b-poly(neopentyl p-styrene sulfonate) (PNSS-b-PBD-b-PNSS) triblock copolymer has been synthesised via azide-alkyne click chemistry. Moreover, subsequent thermolysis of the PNSS moieties generated poly(p-styrene sulfonate) end blocks. This strategy allows the fabrication of amphiphilic copolymer films from single organic solvents without the need for post-deposition chemical treatment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A poly(L-lactide-co-caprolactone) copolymer, P(LL-co-CL), of composition 75:25 mol% was synthesized via the bulk ring-opening copolymerization of L-lactide and ε-caprolactone using a novel bis[tin(II) monooctoate] diethylene glycol coordination-insertion initiator, OctSn-OCH2CH2OCH2CH2O-SnOct. The P(LL-co-CL) copolymer obtained was characterized by a combination of analytical techniques, namely nuclear magnetic resonance spectroscopy, gel permeation chromatography, dilute-solution viscometry, differential scanning calorimetry, and thermogravimetric analysis. For processing into a monofilament fiber, the copolymer was melt spun with minimal draw to give a largely amorphous and unoriented as-spun fiber. The fiber's oriented semicrystalline morphology, necessary to give the required balance of mechanical properties, was then developed via a sequence of controlled offline hot-drawing and annealing steps. Depending on the final draw ratio, the fibers obtained had tensile strengths in the region of 200–400 MPa.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The use of styrene maleic acid (SMA) co-polymers to extract and purify transmembrane proteins, whilst retaining their native bilayer environment, overcomes many of the disadvantages associated with conventional detergent based procedures. This approach has huge potential for the future of membrane protein structural and functional studies. In this investigation we have systematically tested a range of commercially available SMA polymers, varying in both the ratio of styrene to maleic acid and in total size, for the ability to extract, purify and stabilise transmembrane proteins. Three different membrane proteins (BmrA, LeuT and ZipA) which vary in size and shape were used. Our results show that several polymers can be used to extract membrane proteins comparably to conventional detergents. A styrene:maleic acid ratio of either 2:1 or 3:1, combined with a relatively small average molecular weight (7.5-10 kDa) is optimal for membrane extraction, and this appears to be independent of the protein size, shape or expression system. A subset of polymers were taken forward for purification, functional and stability tests. Following a one-step affinity purification SMA 2000 was found to be the best choice for yield, purity and function. However the other polymers offer subtle differences in size and sensitivity to divalent cations that may be useful for a variety of downstream applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is concerned with the effect of polymer structure on miscibility of the three component blends based on poly(lactic acid) (PLA) with using blending techniques. The examination of novel PLA homologues (pre-synthesised poly(a-esters)), including a range of aliphatic and aromatic poly(a-esters) is an important aspect of the work. Because of their structural simplicity and similarity to PLA, they provide an ideal system to study the effect of polyester structures on the miscibility of PLA polymer blends. The miscibility behaviour of the PLA homologues is compared with other aliphatic polyesters (e.g. poly(e-caprolactone) (PCL), poly(hydroxybutyrate hydroxyvalerate) (P(HB-HV)), together with a series of cellulose-based polymers (e.g. cellulose acetate butyrate (CAB)). The work started with the exploration the technique used for preliminary observation of the miscibility of blends referred to as “a rapid screening method” and then the miscibility of binary blends was observed and characterised by percent transmittance together with the Coleman and Painter miscibility approach. However, it was observed that symmetrical structures (e.g. a1(dimethyl), a2(diethyl)) promote the well-packing which restrict their chains from intermingling into poly(L-lactide) (PLLA) chains and leads the blends to be immiscible, whereas, asymmetrical structures (e.g. a4(cyclohexyl)) behave to the contrary. a6(chloromethyl-methyl) should interact well with PLLA because of the polar group of chloride to form interactions, but it does not. It is difficult to disrupt the helical structure of PLLA. PLA were immiscible with PCL, P(HB-HV), or compatibiliser (e.g. G40, LLA-co-PCL), but miscible with CAB which is a hydrogen-bonded polymer. However, these binary blends provided a useful indication for the exploration the novel three component blends. In summary, the miscibility of the three-component blends are miscible even if only two polymers are miscible. This is the benefit for doing the three components blend in this thesis, which is not an attempt to produce a theoretical explanation for the miscibility of three components blend system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Co-polymerisation of α-styryl-poly(ethylene glycol)300, α,ω-bis(styryl)-penta(ethylene glycol) and 2,5-diphenyl-4-(4′-vinylbenzyl)oxazole in varying molar ratios resulted in the production of chemically functionalised scintillant-containing poly(oxyethylene glycol) polymer (POP-Sc) supports. These materials are compatible with both aqueous and organic solvents, and possess the ability to scintillate efficiently in the presence of ionising radiation, even after prolonged and repeated exposure to organic solvents. The utility of POP-Sc supports in both solid-phase peptide chemistry and a functional scintillation proximity assay has been exemplified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis describes an experimental investigation of synthesis of polystyrene under various polymerization conditions such as solvent polarity, temperature, initial concentrations of initiator, catalyst, monomer and added salts or co-catalyst, which was achieved using the living cationic polymerization technology in conjunction with gel permeation chromatography (GPC) and NMR spectroscopy. Polymerizations of styrene were conducted using 1-phenyl ethylchloride (1-PEC) as an initiator and tin tetrachloride (SnCI4) as a catalyst in the presence of tetra-n-Butylammonium chloride (nBu4NCI). Effects of solvent polarity varied by mixing dichloromethane (DCM) and less polar cyclohexane (C.hex), temperature, initial concentrations of SnC14, 1-PEC and nBu4NCI on the polymerizations were examined, and the conditions under which a living polymerization can be obtained were optimised as: [styrene]o ~ 0.75 - 2 M; [1-PEC]o ~ 0.005 - 0.05 M; [SnCI4Jo ~ 0.05 - 0.4 M; [nBu4NCIJo ~ 0.001 - 0.1 M; DCM/C.hex ~ 50/0 - 20/30 v/v; T ~ 0 to -45°C. Kinetic studies of styrene polymerization using the Omnifit sampling method showed that the number average molecular weight (Mn) of the polymers obtained increased in direct proportion to monomer conversion and agreed well with the theoretical Mn expected from the concentration ratios of monomer to initiator. The linearities of both the 1n([MJoI[M]) vs. time plot and the Mn vs. monomer conversion plot, and the narrow molecular weight distribution (MWD) measured using GPC demonstrated the livingness of the polymerizations, indicating the absence of irreversible termination and transfer within the lifetimes of the polymerizations. The proposed 'two species' propagation mechanism was found to apply for the styrene polymerization with 1-PEC/SnCI4 in the presence of nBu4NCl. The further kinetic experiments showed that living styrene polymerizations were achieved using the 1-PEC/SnCI4 initiating system in mixtures of DCM/C.hex 30/20 v/v at -15°C in the presence of various bromide salts, tetra-n-butylammonium bromide, tetra-n-pentylammonium bromide, tetra-n-heptylammonium bromide, and tetra-n-octylammonium bromide, respectively. The types of the bromide salts were found to have no significant effect on monomer conversion, Mn, polydispersity and initiation efficiency. Living polymerizations of styrene were also achieved using titanium tetrachloride (TiCI4) as a catalyst and 1-PEC as an initiator in the presence of a small amount of 2,6-di-tert-butylpyridine or pyridine instead of nBu4NCl. GPC analysis showed that the polymers obtained had narrow polydispersities (P.D. < 1.3), and the linearities of both the In([MJo/[MJ) vs. time plot and the Mn vs. monomer conversion plot demonstrated that the polymerizations are living, when the ratio of DCM and C.hex was less than 40 : 10 and the reaction temperature was not lower than -15°C. The reaction orders relative to TiCl4 and 1-PEC were estimated from the investigations into the rate of polymerization to be 2.56 and 1.0 respectively. lH and 13C NMR analysis of the resultant polystyrene would suggest the end-functionality of the product polymers is chlorine for all living polymerizations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to use the transformation of anionic to metathesis polymerization to produce block co-polymers of styrene-b-pentenylene using WC16 /PStLi and WC16/PStLi/ AlEtC12 catalyst systems. Analysis of the products using SEC and 1H and 13C NMR spectroscopy enabled mechanisms for metathesis initiation reactions to be proposed. The initial work involved preparation of the constituent homo-polymers. Solutions of polystyryllithium in cyclohexane were prepared and diluted so that the [PStLi]o<2x10-3M. The dilution produced initial rapid decay of the active species, followed by slower spontaneous decay within a period of days. This was investigated using UV / visible spectrophotometry and the wavelength of maximum absorbance of the PStLi was found to change with the decay from an initial value of 328mn. to λmax of approximately 340nm. after 4-7 days. SEC analysis of solutions of polystyrene, using RI and UV / visible (set at 254nm.) detectors; showed the UV:RI peak area was constant for a range of polystyrene samples of different moleculor weight. Samples of polypentenylene were prepared and analysed using SEC. Unexpectedly the solutions showed an absorbance at 254nm. which had to be considered when this technique was used subsequently to analyse polymer samples to determine their styrene/ pentenylene co-polymer composition. Cyclohexane was found to be a poor solvent for these ring-opening metathesis polymerizations of cyclopentene. Attempts to produce styrene-b-pentenylene block co-polymers, using a range of co-catalyst systems, were generally unsuccessful as the products were shown to be mainly homopolymers. The character of the polymers did suggest that several catalytic species are present in these systems and mechanisms have been suggested for the formation of initiating carbenes. Evidence of some low molecular weight product with co-polymer character has been obtained. Further investigation indicated that this is most likely to be ABA block copolymer, which led to a mechanism being proposed for the termination of the polymerization.