42 resultados para Piecewise linear systems with two zones


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A probabilistic indirect adaptive controller is proposed for the general nonlinear multivariate class of discrete time system. The proposed probabilistic framework incorporates input–dependent noise prediction parameters in the derivation of the optimal control law. Moreover, because noise can be nonstationary in practice, the proposed adaptive control algorithm provides an elegant method for estimating and tracking the noise. For illustration purposes, the developed method is applied to the affine class of nonlinear multivariate discrete time systems and the desired result is obtained: the optimal control law is determined by solving a cubic equation and the distribution of the tracking error is shown to be Gaussian with zero mean. The efficiency of the proposed scheme is demonstrated numerically through the simulation of an affine nonlinear system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computational performance increasingly depends on parallelism, and many systems rely on heterogeneous resources such as GPUs and FPGAs to accelerate computationally intensive applications. However, implementations for such heterogeneous systems are often hand-crafted and optimised to one computation scenario, and it can be challenging to maintain high performance when application parameters change. In this paper, we demonstrate that machine learning can help to dynamically choose parameters for task scheduling and load-balancing based on changing characteristics of the incoming workload. We use a financial option pricing application as a case study. We propose a simulation of processing financial tasks on a heterogeneous system with GPUs and FPGAs, and show how dynamic, on-line optimisations could improve such a system. We compare on-line and batch processing algorithms, and we also consider cases with no dynamic optimisations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relatively high phase noise of coherent optical systems poses unique challenges for forward error correction (FEC). In this letter, we propose a novel semianalytical method for selecting combinations of interleaver lengths and binary Bose-Chaudhuri-Hocquenghem (BCH) codes that meet a target post-FEC bit error rate (BER). Our method requires only short pre-FEC simulations, based on which we design interleavers and codes analytically. It is applicable to pre-FEC BER ∼10-3, and any post-FEC BER. In addition, we show that there is a tradeoff between code overhead and interleaver delay. Finally, for a target of 10-5, numerical simulations show that interleaver-code combinations selected using our method have post-FEC BER around 2× target. The target BER is achieved with 0.1 dB extra signal-to-noise ratio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Forward error correction (FEC) plays a vital role in coherent optical systems employing multi-level modulation. However, much of coding theory assumes that additive white Gaussian noise (AWGN) is dominant, whereas coherent optical systems have significant phase noise (PN) in addition to AWGN. This changes the error statistics and impacts FEC performance. In this paper, we propose a novel semianalytical method for dimensioning binary Bose-Chaudhuri-Hocquenghem (BCH) codes for systems with PN. Our method involves extracting statistics from pre-FEC bit error rate (BER) simulations. We use these statistics to parameterize a bivariate binomial model that describes the distribution of bit errors. In this way, we relate pre-FEC statistics to post-FEC BER and BCH codes. Our method is applicable to pre-FEC BER around 10-3 and any post-FEC BER. Using numerical simulations, we evaluate the accuracy of our approach for a target post-FEC BER of 10-5. Codes dimensioned with our bivariate binomial model meet the target within 0.2-dB signal-to-noise ratio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a study of the influence of dispersion induced phase noise for CO-OFDM systems using FFT multiplexing/IFFT demultiplexing techniques (software based). The software based system provides a method for a rigorous evaluation of the phase noise variance caused by Common Phase Error (CPE) and Inter-Carrier Interference (ICI) including - for the first time to our knowledge - in explicit form the effect of equalization enhanced phase noise (EEPN). This, in turns, leads to an analytic BER specification. Numerical results focus on a CO-OFDM system with 10-25 GS/s QPSK channel modulation. A worst case constellation configuration is identified for the phase noise influence and the resulting BER is compared to the BER of a conventional single channel QPSK system with the same capacity as the CO-OFDM implementation. Results are evaluated as a function of transmission distance. For both types of systems, the phase noise variance increases significantly with increasing transmission distance. For a total capacity of 400 (1000) Gbit/s, the transmission distance to have the BER < 10-2 for the worst case CO-OFDM design is less than 800 and 460 km, respectively, whereas for a single channel QPSK system it is less than 1400 and 560 km.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We overview our recent developments in the theory of dispersion-managed (DM) solitons within the context of optical applications. First, we present a class of localized solutions with a period multiple to that of the standard DM soliton in the nonlinear Schrödinger equation with periodic variations of the dispersion. In the framework of a reduced ordinary differential equation-based model, we discuss the key features of these structures, such as a smaller energy compared to traditional DM solitons with the same temporal width. Next, we present new results on dissipative DM solitons, which occur in the context of mode-locked lasers. By means of numerical simulations and a reduced variational model of the complex Ginzburg-Landau equation, we analyze the influence of the different dissipative processes that take place in a laser.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A complex Ginzburg-Landau equation subjected to local and global time-delay feedback terms is considered. In particular, multiple oscillatory solutions and their properties are studied. We present novel results regarding the disappearance of limit cycle solutions, derive analytical criteria for frequency degeneration, amplitude degeneration, frequency extrema. Furthermore, we discuss the influence of the phase shift parameter and show analytically that the stabilization of the steady state and the decay of all oscillations (amplitude death) cannot happen for global feedback only. Finally, we explain the onset of traveling wave patterns close to the regime of amplitude death.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relay selection has been considered as an effective method to improve the performance of cooperative communication. However, the Channel State Information (CSI) used in relay selection can be outdated, yielding severe performance degradation of cooperative communication systems. In this paper, we investigate the relay selection under outdated CSI in a Decode-and-Forward (DF) cooperative system to improve its outage performance. We formulize an optimization problem, where the set of relays that forwards data is optimized to minimize the probability of outage conditioned on the outdated CSI of all the decodable relays’ links. We then propose a novel multiple-relay selection strategy based on the solution of the optimization problem. Simulation results show that the proposed relay selection strategy achieves large improvement of outage performance compared with the existing relay selection strategies combating outdated CSI given in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A bending sensor is achieved by employing a singlemode fiber-dual core photonic crystal fiber- singlemode fiber (SDS) structure with two tapers at fusing points. A sensitivity of - 4.3421nm/m∼ between the transmission spectra shift and curvature is demonstrated. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In oscillatory reaction-diffusion systems, time-delay feedback can lead to the instability of uniform oscillations with respect to formation of standing waves. Here, we investigate how the presence of additive, Gaussian white noise can induce the appearance of standing waves. Combining analytical solutions of the model with spatio-temporal simulations, we find that noise can promote standing waves in regimes where the deterministic uniform oscillatory modes are stabilized. As the deterministic phase boundary is approached, the spatio-temporal correlations become stronger, such that even small noise can induce standing waves in this parameter regime. With larger noise strengths, standing waves could be induced at finite distances from the (deterministic) phase boundary. The overall dynamics is defined through the interplay of noisy forcing with the inherent reaction-diffusion dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presence of high phase noise in addition to additive white Gaussian noise in coherent optical systems affects the performance of forward error correction (FEC) schemes. In this paper, we propose a simple scheme for such systems, using block interleavers and binary Bose–Chaudhuri–Hocquenghem (BCH) codes. The block interleavers are specifically optimized for differential quadrature phase shift keying modulation. We propose a method for selecting BCH codes that, together with the interleavers, achieve a target post-FEC bit error rate (BER). This combination of interleavers and BCH codes has very low implementation complexity. In addition, our approach is straightforward, requiring only short pre-FEC simulations to parameterize a model, based on which we select codes analytically. We aim to correct a pre-FEC BER of around (Formula presented.). We evaluate the accuracy of our approach using numerical simulations. For a target post-FEC BER of (Formula presented.), codes selected using our method result in BERs around 3(Formula presented.) target and achieve the target with around 0.2 dB extra signal-to-noise ratio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chapter discusses both the complementary factors and contradictions of adopting ERP based systems with enterprise 2.0. ERP is characterized as achieving efficient business performance by enabling a standardized business process design, but at a cost of flexibility in operations. It is claimed that enterprise 2.0 can support flexible business process management and so incorporate informal and less structured interactions. A traditional view however is that efficiency and flexibility objectives are incompatible as they are different business objectives which are pursued separately in different organizational environments. Thus an ERP system with a primary objective of improving efficiency and an enterprise 2.0 system with a primary aim of improving flexibility may represent a contradiction and lead to a high risk of failure if adopted simultaneously. This chapter will use case study analysis to investigate the use of a combination of ERP and enterprise 2.0 in a single enterprise with the aim of improving both efficiency and flexibility in operations. The chapter provides an in-depth analysis of the combination of ERP with enterprise 2.0 based on social-technical information systems management theory. The chapter also provides a summary of the benefits of the combination of ERP systems and enterprise 2.0 and how they could contribute to the development of a new generation of business management that combines both formal and informal mechanisms. For example, the multiple-sites or informal communities of an enterprise could collaborate efficiently with a common platform with a certain level of standardization but also have the flexibility in order to provide an agile reaction to internal and external events.