100 resultados para Phase shift
Resumo:
We demonstrate that the transmission of 40 Gbits/s return-to-zero differential phase-shift keying (RZ-DPSK) signals is robust to lumped dispersion mapping on a typical installed terrestrial single-mode fiber/dispersion compensating fiber (SMF-DCF) link and will withstand, in this case, propagation through over 800 km of SMF with zero in-line group-velocity dispersion compensation while maintaining similar performance to configurations with periodic mapping. We establish that upgrading similar point-to-point links, which have lumped dispersion maps, are compatible with 40 Gbits/s RZ-DPSK and that economic benefits can be realized when implementing lumped dispersion mapping in new 40 Gbits/s RZ-DPSK terrestrial links, while incurring a relatively low performance penalty. (c) 2008 Optical Society of America.
Resumo:
Polarization-switched quadrature phase-shift keying has been demonstrated experimentally at 40.5Gb/s with a coherent receiver and digital signal processing. Compared to polarization-multiplexed QPSK at the same bit rate, its back-to-back sensitivity at 10-3 bit-error-ratio shows 0.9dB improvement, and it tolerates about 1.6dB higher launch power for 10 × 100km, 50GHz-spaced WDM transmission allowing 1dB penalty in required optical-signal-to-noise ratio relative to back-to-back.
Resumo:
We investigate the use of different direct detection modulation formats in a wavelength switched optical network. We find the minimum time it takes a tunable sampled grating distributed Bragg reflector laser to recover after switching from one wavelength channel to another for different modulation formats. The recovery time is investigated utilizing a field programmable gate array which operates as a time resolved bit error rate detector. The detector offers 93 ps resolution operating at 10.7 Gb/s and allows for all the data received to contribute to the measurement, allowing low bit error rates to be measured at high speed. The recovery times for 10.7 Gb/s non-return-to-zero on–off keyed modulation, 10.7 Gb/s differentially phase shift keyed signal and 21.4 Gb/s differentially quadrature phase shift keyed formats can be as low as 4 ns, 7 ns and 40 ns, respectively. The time resolved phase noise associated with laser settling is simultaneously measured for 21.4 Gb/s differentially quadrature phase shift keyed data and it shows that the phase noise coupled with frequency error is the primary limitation on transmitting immediately after a laser switching event.
Optical packet transmission in 42.6 Gbit/s wavelength-division-multiplexed clockwork-routed networks
Resumo:
The use of amplitude-modulated phase-shift-keyed (AM-PSK) optical data transmission is investigated in a sequence of concatenated links in a wavelength-division-multiplexed clockwork-routed network. The narrower channel spacing made possible by using AM-PSK format allows the network to contain a greater number of network nodes. Full differential precoding at the packet source reduces the amount of high-speed electronics required in the network and also offers simplified header recognition and time-to-live mechanisms.
Resumo:
Future optical networks will require the implementation of very high capacity (and therefore spectral efficient) technologies. Multi-carrier systems, such as Orthogonal Frequency Division Multiplexing (OFDM) and Coherent WDM (CoWDM), are promising candidates. In this paper, we present analytical, numerical, and experimental investigations of the impact of the relative phases between optical subcarriers of CoWDM systems, as well as the effect that the number of independently modulated subcarriers can have on the performance. We numerically demonstrate a five-subcarrier and three-subcarrier 10-GBd CoWDM system with direct detected amplitude shift keying (ASK) and differentially/coherently detected (D) phase shift keying (PSK). The simulation results are compared with experimental measurements of a 32-Gbit/s DPSK CoWDM system in two configurations. The first configuration was a practical 3-modulator array where all three subcarriers were independently modulated, the second configuration being a traditional 2-modulator odd/even configuration, where only odd and even subcarriers were independently modulated. Simulation and experimental results both indicate that the independent modulation implementation has a greater dependency on the relative phases between subcarriers, with a stronger penalty for the center subcarrier than the odd/even modulation scheme.
Resumo:
This letter compares two nonlinear media for simultaneous carrier recovery and generation of frequency symmetric signals from a 42.7-Gb/s nonreturn-to-zero binary phase-shift-keyed input by exploiting four-wave mixing in a semiconductor optical amplifier and a highly nonlinear optical fiber for use in a phase-sensitive amplifier.
Resumo:
We demonstrate the first experimental implementation of a 3.9-Gb/s differential binary phase-shift keying (DBPSK)-based double sideband (DSB) optical fast orthogonal frequency-division-multiplexing (FOFDM) system with a reduced subcarrier spacing equal to half the symbol rate over 300m of multimode fiber (MMF) using intensity-modulation and direct-detection (IM/DD). The required received optical power at a bit-error rate (BER) of 10(-3) was measured to be similar to -14.2 dBm with a receiver sensitivity penalty of only similar to 0.2 dB when compared to the back-to-back case. Experimental results agree very well with the theoretical predictions.
Resumo:
This paper studies the performance of a typical non-slope matched transoceanic submarine link using 20Gb/s channel rate and RZ-DPSK modulation with different duty cycles. Through comparison with direct error counting, we have also demonstrated the limitations of the available numerical approaches to the BER estimation for return-to-zero differential phase-shift keying (RZ-DPSK). The numerical results have been confirmed by experiments, and indicate that 20 Gb/s RZ-DPSK transmission is a feasible technique for the upgrade of existing submarine links.
Resumo:
Applying direct error counting, we compare the accuracy and evaluate the validity of different available numerical approaches to the estimation of the bit-error rate (BER) in 40-Gb/s return-to-zero differential phase-shift-keying transmission. As a particular example, we consider a system with in-line semiconductor optical amplifiers. We demonstrate that none of the existing models has an absolute superiority over the others. We also reveal the impact of the duty cycle on the accuracy of the BER estimates through the differently introduced Q-factors.
Resumo:
We present a concept for all-optical differential phase-shift keying (DPSK) signal regeneration, based on a new design of Raman amplified nonlinear loop mirror (RA-NOLM). We demonstrate simultaneous amplitude-shape regeneration and phase noise reduction in high-speed DPSK systems by use of the RA-NOLM combined with spectral filtering.
Resumo:
We analyze a soliton-like phase-shift keying 40-Gb/s transmission system using cascaded in-line semiconductor optical amplifiers. Numerical optimization of the proposed soliton-like regime is presented.
Resumo:
We numerically demonstrate the feasibility of return-to-zero differential phase-shift keying transmission at 8.0 Gbit/s channel rate using cascaded in-line semiconductor optical amplifiers.
Resumo:
We numerically demonstrate the feasibility of return-to-zero differential phase-shift keying transmission at 80 Gbit/s channel rate using cascaded in-line semiconductor optical amplifiers.
Resumo:
We numerically demonstrate the feasibility of return-to-zero differential phase-shift keying transmission at 80 Gbit/s channel rate using cascaded in-line semiconductor optical amplifiers.
Resumo:
In this letter, we report the performance of a fiber optical parametric amplifier (OPA) when used as a source or intermediate node amplifier in a dense wavelength-division-multiplexed (DWDM) long-haul transmission testbed with 26 DWDM channels modulated at 43.7-Gb/s return-to-zero differential phase-shift keying. In both scenarios, we demonstrate similar performance to an erbium-doped fiber amplifier. This shows the OPAs compatibility with high-capacity (>1 Tb/s) long-haul communication systems.