61 resultados para Patterns of specialization
Resumo:
The objective of this article is to describe the patterns of inheritance exhibited in the human populations and to illustrate them with examples drawn from a variety of ocular diseases.
Resumo:
We have studied the spatial distribution of plaques in coronal and tangential sections of the parahippocampal gyrus (PHG), the hippocampus, the frontal lobe and the temporal lobe of five SDAT patients. Sections were stained with cresyl violet and examined at two magnifications (x100 and x400). in all cases (and at both magnifications) statistical analysis using the Poisson distribution showed that the plaques were arranged in clumps (x100: V/M = 1.48 - 4.49; x400 V/M = 1.17 - 1.95). this indicates that both large scale and small scale clumping occurs. Application of the statistical techniques of pattern analysis to coronal sections of frontal and temporal cortex and PHG showed. furthermore, that both large (3200-6400 micron) and small scale (100 - 400 micron) clumps were arranged with a high degree of regularity in the tissue. This suggests that the clumps of plaques reflect underlying neural structure.
Resumo:
Tau positive neuronal cytoplasmic inclusions (NCI) are the ‘hallmark’ pathological feature of several neurodegenerative diseases collectively known as the tauopathies. This study compared the spatial patterns of various types of NCI in selected tauopathies including the neurofibrillary tangles (NFT) in Alzheimer's disease (AD) and progressive supranuclear palsy (PSP), Pick bodies (PB) in Pick’s disease (PiD), and the tau positive (tau+) neurons in corticobasal degeneration (CBD). In the cerebral cortex of these disorders, the tau+ NCI were distributed in clusters and in a significant proportion of analyses, the clusters were distributed with a regular periodicity parallel to the pia mater. The inclusions in AD, PiD and CBD exhibited a similar range of spatial patterns but in PSP were less frequently clustered and more frequently randomly distributed. In gyri where the NCI were clustered, there was a significant difference in mean cluster size between disorders. Hence, clusters of NFT in AD were larger than those in PSP and the tau+ neurons in CBD and clusters of PB in PiD were larger than the tau+ neurons in CBD and the NFT in PSP. The cluster size of the tau+ neurons in CBD was similar to the NFT in PSP. The data suggest that the formation of clusters of NCI, regularly distributed parallel to the pia mater, is a common feature of the tauopathies indicating similar patterns of cortical degeneration and pathogenic mechanisms across different diseases. Furthermore, the data suggest that cortical degeneration affecting the short and long cortico-cortical pathways may be a characteristic of the tauopathies.
Resumo:
In this thesis patterns of working hours in large-scale grocery retailing in Britain and France are compared. The research is carried out using cross-national comparative methodology, and the analysis is based on information derived from secondary sources and empirical research in large-scale grocery retailing involving employers and trade unions at industry level and case studies at outlet level. The thesis begins by comparing national patterns of working hours in Britain and France over the post-war period. Subsequently, a detailed comparison of working hours in large-scale grocery retailing in Britain and France is carried out through the analysis of secondary sources and empirical data. Emphasis is placed on analyzing part-time working hours. They are contrasted and compared at national level and explained in terms of supply and demand factors. The relationships between the structuring of, and satisfaction with, working hours and factors determining women's integration in the workforce in Britain and France are investigated. Part-time hours are then compared and contrasted in large-scale grocery retailing in the context of the analysis of working hours. The relationship between the structuring of working hours and satisfaction with them is examined in both countries through research with women part-timers in case study outlets. The cross-national comparative methodology is used to examine whether dissimilar national contexts in Britain and France have led to different patterns of working hours in large-scale grocery retailing. The principal conclusion is that significant differences are found in the length, organization and flexibility of working hours and that these differences can be attributed to dissimilar socio-economic, political, and cultural contexts in the two countries.
Resumo:
Mutations of the progranulin (GRN) gene are a major cause of familial frontotemporal lobar degeneration with transactive response (TAR) DNA-binding protein of 43 kDa (TDP-43) proteinopathy (FTLD-TDP). We studied the spatial patterns of TDP-43 immunoreactive neuronal cytoplasmic inclusions (NCI) and neuronal intranuclear inclusions (NII) in histological sections of the frontal and temporal lobe in eight cases of FTLD-TDP with GRN mutation using morphometric methods and spatial pattern analysis. In neocortical regions, the NCI were clustered and the clusters were regularly distributed parallel to the pia mater; 58% of regions analysed exhibiting this pattern. The NII were present in regularly distributed clusters in 35% of regions but also randomly distributed in many areas. In neocortical regions, the sizes of the regular clusters of NCI and NII were 400-800 µm, approximating to the size of the modular columns of the cortico-cortical projections, in 31% and 36% of regions respectively. The NCI and NII also exhibited regularly spaced clustering in sectors CA1/2 of the hippocampus and in the dentate gyrus. The clusters of NCI and NII were not spatially correlated. The data suggest degeneration of the cortico-cortical and cortico-hippocampal pathways in FTLD-TDP with GRN mutation, the NCI and NII affecting different clusters of neurons.
Resumo:
Neuronal intermediate filament inclusion disease (NIFID), a rare form of frontotemporal lobar degeneration (FTLD), is characterized neuropathologically by focal atrophy of the frontal and temporal lobes, neuronal loss, gliosis, and neuronal cytoplasmic inclusions (NCI) containing epitopes of ubiquitin and neuronal intermediate filament (IF) proteins. Recently, the 'fused in sarcoma' (FUS) protein (encoded by the FUS gene) has been shown to be a component of the inclusions of NIFID. To further characterize FUS proteinopathy in NIFID, we studied the spatial patterns of the FUS-immunoreactive NCI in frontal and temporal cortex of 10 cases. In the cerebral cortex, sectors CA1/2 of the hippocampus, and the dentate gyrus (DG), the FUS-immunoreactive NCI were frequently clustered and the clusters were regularly distributed parallel to the tissue boundary. In a proportion of cortical gyri, cluster size of the NCI approximated to those of the columns of cells was associated with the cortico-cortical projections. There were no significant differences in the frequency of different types of spatial patterns with disease duration or disease stage. Clusters of NCI in the upper and lower cortex were significantly larger using FUS compared with phosphorylated, neurofilament heavy polypeptide (NEFH) or a-internexin (INA) immunohistochemistry (IHC). We concluded: (1) FUS-immunoreactive NCI exhibit similar spatial patterns to analogous inclusions in the tauopathies and synucleinopathies, (2) clusters of FUS-immunoreactive NCI are larger than those revealed by NEFH or ???, and (3) the spatial patterns of the FUS-immunoreactive NCI suggest the degeneration of the cortico-cortical projections in NIFID.
Resumo:
Neuronal cytoplasmic inclusions (NCI) immunoreactive for transactive response DNA-binding protein (TDP-43) are the pathological hallmark of frontotemporal lobar degeneration with TDP-43 proteinopathy (FTLD-TDP). We studied the spatial patterns of the TDP-43 immunoreactive NCI in the frontal and temporal cortex of 15 cases of FTLD-TDP. The NCI were distributed parallel to the tissue boundary predominantly in regular clusters 50-400 µm in diameter. In five cortical areas, the size of the clusters approximated to the cells of the cortico-cortical pathways. In most regions, cluster size was smaller than 400 µm. There were no significant differences in spatial patterns between familial and sporadic cases. Cluster size of the NCI was not correlated with disease duration, brain weight, Braak stage, or disease subtype. The spatial pattern of the NCI was similar to that of neuronal inclusions in other neurodegenerative diseases and may reflect a common pattern of degeneration involving the cortico-cortical projections.
Resumo:
Visual mental imagery is a complex process that may be influenced by the content of mental images. Neuropsychological evidence from patients with hemineglect suggests that in the imagery domain environments and objects may be represented separately and may be selectively affected by brain lesions. In the present study, we used functional magnetic resonance imaging (fMRI) to assess the possibility of neural segregation among mental images depicting parts of an object, of an environment (imagined from a first-person perspective), and of a geographical map, using both a mass univariate and a multivariate approach. Data show that different brain areas are involved in different types of mental images. Imagining an environment relies mainly on regions known to be involved in navigational skills, such as the retrosplenial complex and parahippocampal gyrus, whereas imagining a geographical map mainly requires activation of the left angular gyrus, known to be involved in the representation of categorical relations. Imagining a familiar object mainly requires activation of parietal areas involved in visual space analysis in both the imagery and the perceptual domain. We also found that the pattern of activity in most of these areas specifically codes for the spatial arrangement of the parts of the mental image. Our results clearly demonstrate a functional neural segregation for different contents of mental images and suggest that visuospatial information is coded by different patterns of activity in brain areas involved in visual mental imagery. Hum Brain Mapp 36:945-958, 2015.
Resumo:
The pattern of senile plaques was investigated in various brain regions of six SDAT brains. In 91 pattern analyses, the regularly spaced clump was the most common pattern found in 64.8% of analyses. Clumping due to large aggregations of uncored plaques in sulci was also common. Regularly spaced clumps were equally common in the hippocampus and neocortex. The pattern of plaques varied in different tissue sections from the same brain region. Cored and uncored plaques presented a similar range of patterns but their pattern varied when they were both present in the same tissue section. Both clump diameter and the intensity of clumping were positively correlated with cored but unrelated to uncored plaque density. Plaques may develop in regular clumps on subcortical afferents and during development of the disease the clumps may spread laterally and ultimately coalesce.
Resumo:
In Alzheimer's disease (AD), the 'Cascade hypothesis' proposes that the formation of paired helical filaments (PHF) may be casually linked to the deposition of beta/A4 protein. Hence, there should be a close spatial relationship between senile plaques and cellular neurofibrillary tangles in a local region of the brain. In tissue from 6 AD patients, plaques and tangles occurred in clusters and individual clusters were often regularly spaced along the cortical strip. However, the clusters of plaques and tangles were in phase in only 4/32 cortical tissues examined. Hence, the data were not consistent with the 'Cascade hypothesis' that beta/A4 and PHF are directly linked in AD.
Resumo:
The spatial patterns of diffuse, primitive, classic (cored) and compact (burnt-out) subtypes of beta/A4 deposits were studied in coronal sections of the frontal lobe and hippocampus, including the adjacent gyri, in nine cases of Alzheimer's disease (AD). If the more mature deposits were derived from the diffuse deposits then there should be a close association between their spatial patterns in a brain region. In the majority of tissues examined, all deposit subtypes occurred in clusters which varied in dimension from 200 to 6400 microns. In many tissues, the clusters appeared to be regularly spaced parallel to the pia or alveus. The mean dimension of the primitive deposit clusters was greater than those of the diffuse, classic and compact types. In about 60% of cortical tissues examined, the clusters of primitive and diffuse deposits were not in phase, i.e. they alternated along the cortical strip. Clusters of classic deposits appeared to be distributed independently of the diffuse deposit clusters. Cluster size of the primitive deposits was positively correlated with the density of the primitive deposits in a tissue but no such relationship could be detected for the diffuse deposits. This study suggested that there was a complex relationship between the clusters of the different subtypes of beta/A4 deposits. If the diffuse deposits do give rise to the primitive and classic varieties then factors unrelated to the initial deposition of beta/A4 in the form of diffuse plaques were important in the formation of the mature deposits.
Resumo:
Background - Neural substrates of emotion dysregulation in adolescent suicide attempters remain unexamined. Method - We used functional magnetic resonance imaging to measure neural activity to neutral, mild or intense (i.e. 0%, 50% or 100% intensity) emotion face morphs in two separate emotion-processing runs (angry and happy) in three adolescent groups: (1) history of suicide attempt and depression (ATT, n = 14); (2) history of depression alone (NAT, n = 15); and (3) healthy controls (HC, n = 15). Post-hoc analyses were conducted on interactions from 3 group × 3 condition (intensities) whole-brain analyses (p < 0.05, corrected) for each emotion run. Results - To 50% intensity angry faces, ATT showed significantly greater activity than NAT in anterior cingulate gyral–dorsolateral prefrontal cortical attentional control circuitry, primary sensory and temporal cortices; and significantly greater activity than HC in the primary sensory cortex, while NAT had significantly lower activity than HC in the anterior cingulate gyrus and ventromedial prefrontal cortex. To neutral faces during the angry emotion-processing run, ATT had significantly lower activity than NAT in the fusiform gyrus. ATT also showed significantly lower activity than HC to 100% intensity happy faces in the primary sensory cortex, and to neutral faces in the happy run in the anterior cingulate and left medial frontal gyri (all p < 0.006,corrected). Psychophysiological interaction analyses revealed significantly reduced anterior cingulate gyral–insula functional connectivity to 50% intensity angry faces in ATT v. NAT or HC. Conclusions - Elevated activity in attention control circuitry, and reduced anterior cingulate gyral–insula functional connectivity, to 50% intensity angry faces in ATT than other groups suggest that ATT may show inefficient recruitment of attentional control neural circuitry when regulating attention to mild intensity angry faces, which may represent a potential biological marker for suicide risk.