45 resultados para Partial least square regression
Resumo:
We proposed and tested a multilevel model, underpinned by empowerment theory, that examines the processes linking high-performance work systems (HPWS) and performance outcomes at the individual and organizational levels of analyses. Data were obtained from 37 branches of 2 banking institutions in Ghana. Results of hierarchical regression analysis revealed that branch-level HPWS relates to empowerment climate. Additionally, results of hierarchical linear modeling that examined the hypothesized cross-level relationships revealed 3 salient findings. First, experienced HPWS and empowerment climate partially mediate the influence of branch-level HPWS on psychological empowerment. Second, psychological empowerment partially mediates the influence of empowerment climate and experienced HPWS on service performance. Third, service orientation moderates the psychological empowerment-service performance relationship such that the relationship is stronger for those high rather than low in service orientation. Last, ordinary least squares regression results revealed that branch-level HPWS influences branch-level market performance through cross-level and individual-level influences on service performance that emerges at the branch level as aggregated service performance. © 2011 American Psychological Association.
Resumo:
57Fe Mössbauer spectroscopy of the mononuclear [Fe(II)(isoxazole)6](BF4) 2compound has been studied to reveal the thermal spin crossover of Fe(II) between low-spin (S = 0) and high-spin (S = 2) states. A temperature-dependent spin transition curve has been constructed with the least-square fitted data obtained from the Mössbauer spectra measured at various temperatures in the 240-60K range during the cooling and heating cycle. The compound exhibits a temperature-dependent two-step spin transition phenomenon with Tsco (step 1) = 92 and Tsco (step2) = 191K. The compound has three high-spin Fe(II) sites at the highest temperature of study; among them, two have slightly different coordination environments. These two Fe(II) sites are found to undergo a spin transition, while the third Fe(II) site retains the high-spin state over the whole temperature range. Possible reasons for the formation of the two steps in the spin transition curve are discussed. The observations made from the present study are in complete agreement with those envisaged from earlier magnetic and structural studies made on [Fe(II)(isoxazole)6](BF4)2, but highlights the nature of the spin crossover mechanism.
Resumo:
Background - MHC Class I molecules present antigenic peptides to cytotoxic T cells, which forms an integral part of the adaptive immune response. Peptides are bound within a groove formed by the MHC heavy chain. Previous approaches to MHC Class I-peptide binding prediction have largely concentrated on the peptide anchor residues located at the P2 and C-terminus positions. Results - A large dataset comprising MHC-peptide structural complexes was created by re-modelling pre-determined x-ray crystallographic structures. Static energetic analysis, following energy minimisation, was performed on the dataset in order to characterise interactions between bound peptides and the MHC Class I molecule, partitioning the interactions within the groove into van der Waals, electrostatic and total non-bonded energy contributions. Conclusion - The QSAR techniques of Genetic Function Approximation (GFA) and Genetic Partial Least Squares (G/PLS) algorithms were used to identify key interactions between the two molecules by comparing the calculated energy values with experimentally-determined BL50 data. Although the peptide termini binding interactions help ensure the stability of the MHC Class I-peptide complex, the central region of the peptide is also important in defining the specificity of the interaction. As thermodynamic studies indicate that peptide association and dissociation may be driven entropically, it may be necessary to incorporate entropic contributions into future calculations.
Resumo:
With its implications for vaccine discovery, the accurate prediction of T cell epitopes is one of the key aspirations of computational vaccinology. We have developed a robust multivariate statistical method, based on partial least squares, for the quantitative prediction of peptide binding to major histocompatibility complexes (MHC), the principal checkpoint on the antigen presentation pathway. As a service to the immunobiology community, we have made a Perl implementation of the method available via a World Wide Web server. We call this server MHCPred. Access to the server is freely available from the URL: http://www.jenner.ac.uk/MHCPred. We have exemplified our method with a model for peptides binding to the common human MHC molecule HLA-B*3501.
Resumo:
Accurate T-cell epitope prediction is a principal objective of computational vaccinology. As a service to the immunology and vaccinology communities at large, we have implemented, as a server on the World Wide Web, a partial least squares-base multivariate statistical approach to the quantitative prediction of peptide binding to major histocom-patibility complexes (MHC), the key checkpoint on the antigen presentation pathway within adaptive,cellular immunity. MHCPred implements robust statistical models for both Class I alleles (HLA-A*0101, HLA-A*0201, HLA-A*0202, HLA-A*0203,HLA-A*0206, HLA-A*0301, HLA-A*1101, HLA-A*3301, HLA-A*6801, HLA-A*6802 and HLA-B*3501) and Class II alleles (HLA-DRB*0401, HLA-DRB*0401and HLA-DRB* 0701).
Resumo:
From a Service-Dominant Logic (S-DL) perspective, employees constitute operant resources that firms can draw to enhance the outcomes of innovation efforts. While research acknowledges that frontline employees (FLEs) constitute, through service encounters, a key interface for the transfer of valuable external knowledge into the firm, the range of potential benefits derived from FLE-driven innovation deserves more investigation. Using a sample of knowledge intensive business services firms (KIBS), this study examines how the collaboration with FLEs along the new service development (NSD) process, namely FLE co-creation, impacts on service innovation performance following two routes of different effects. Partial least squares structural equation modeling (PLS-SEM) results indicate that FLE co-creation benefits the NS success among FLEs and firm’s customers, the constituents of the resources route. FLE co-creation also has a positive effect on the NSD speed, which in turn enhances the NS quality. NSD speed and NS quality integrate the operational route, which proves to be the most effective path to impact the NS market performance. Accordingly, KIBS managers must value their FLEs as essential partners to achieve successful innovation from an internal and external perspective, and develop the appropriate mechanisms to guarantee their effective involvement along the NSD process.
Resumo:
This paper analyzes the relationship between freight accessibility and logistics employment in the US. It develops an accessibility measure relevant for logistics companies based on a gravity model. This allows for an analysis of the accessibility of US counties focusing on four different modes of transportation: road, rail, air, and maritime. Using a Partial Least Squares model, these four different freight accessibility measures are combined into two constructs, continental and intercontinental freight accessibility, and related to logistics employment. Results show that highly accessible counties attract more logistics employment than other counties. The analyses show that it is very important to control for the effect of the county population on both freight accessibility and logistics employment. While county population explains the most variation in the logistics employment per county, there is a significant relationship between freight accessibility and logistics employment, when controlling for this effect.
Resumo:
Purpose – The purpose of this empirical paper is to investigate internal marketing from a behavioural perspective. The impact of internal marketing behaviours, operationalised as an internal market orientation (IMO), on employees' marketing and other in/role behaviours (IRB) were examined. Design/methodology/approach – Survey data measuring IMO, market orientation and a range of constructs relevant to the nomological network in which they are embedded were collected from the UK retail managers. These were tested to establish their psychometric properties and the conceptual model was analysed using structural equations modelling, employing a partial least squares methodology. Findings – IMO has positive consequences for employees' market/oriented and other IRB. These, in turn, influence marketing success. Research limitations/implications – The paper provides empirical support for the long/held assumption that internal and external marketing are related and that organisations should balance their external focus with some attention to employees. Future research could measure the attitudes and behaviours of managers, employees and customers directly and explore the relationships between them. Practical implications – Firm must ensure that they do not put the needs of their employees second to those of managers and shareholders; managers must develop their listening skills and organisations must become more responsive to the needs of their employees. Originality/value – The paper contributes to the scarce body of empirical support for the role of internal marketing in services organisations. For researchers, this paper legitimises the study of internal marketing as a route to external market success; for managers, the study provides quantifiable evidence that focusing on employees' wants and needs impacts their behaviours towards the market. © 2010, Emerald Group Publishing Limited
Resumo:
Correlation and regression are two of the statistical procedures most widely used by optometrists. However, these tests are often misused or interpreted incorrectly, leading to erroneous conclusions from clinical experiments. This review examines the major statistical tests concerned with correlation and regression that are most likely to arise in clinical investigations in optometry. First, the use, interpretation and limitations of Pearson's product moment correlation coefficient are described. Second, the least squares method of fitting a linear regression to data and for testing how well a regression line fits the data are described. Third, the problems of using linear regression methods in observational studies, if there are errors associated in measuring the independent variable and for predicting a new value of Y for a given X, are discussed. Finally, methods for testing whether a non-linear relationship provides a better fit to the data and for comparing two or more regression lines are considered.
Resumo:
Multiple regression analysis is a complex statistical method with many potential uses. It has also become one of the most abused of all statistical procedures since anyone with a data base and suitable software can carry it out. An investigator should always have a clear hypothesis in mind before carrying out such a procedure and knowledge of the limitations of each aspect of the analysis. In addition, multiple regression is probably best used in an exploratory context, identifying variables that might profitably be examined by more detailed studies. Where there are many variables potentially influencing Y, they are likely to be intercorrelated and to account for relatively small amounts of the variance. Any analysis in which R squared is less than 50% should be suspect as probably not indicating the presence of significant variables. A further problem relates to sample size. It is often stated that the number of subjects or patients must be at least 5-10 times the number of variables included in the study.5 This advice should be taken only as a rough guide but it does indicate that the variables included should be selected with great care as inclusion of an obviously unimportant variable may have a significant impact on the sample size required.
Resumo:
Experirnental data and theoretical calculation on the heat transfer performance of extended surface submerged: in shallow air fluidized beds ~ less than 150 mm, are presented. Energy t;ransferrence from the bed material was effected by water cooled tubes passing through the fins. The extended surface tested was either manufactured from square or radial copper fins silver soldered to a circular basic tube or commercially supplied, being of the crimped or extruded helical fin type. Performances are compared, for a wide range of geometric variables, bed configurations and fluidized materials, with plain and oval tubes operating under similar experimental conditions. A statistical analysis of all results, using a regression technique, has shown the relative importance of each significant variable. The bed to surface heat transfer coefficients are higher than those reported in earlier published work using finned tubes in much deeper beds and the heat transfer to the whole of the extended surface is at least as good as that previously reported for un-finned tubes. The improved performance is attributed partly to the absence of large bubbles in shallow beds and it is suggested that the improved circulation of the solids when constrained in the narrow passages between adjacent fins may be a contributory factor. Flow visualisation studies between a perspex extended surface and a fluidized bed using air at ambient temperatures, have demonstrated the effect of too small a fin spacing. Fin material and the bonding to the basic tube are more important in the optimisation of performance than in conventional convective applications because of the very much larger heat fluxes involved. A theoretical model of heat flow for a radial fin surface, provides data concerning the maximum heat transfer and minimum metal required to fulfil a given heat exchange duty. Results plotted in a series of charts aim at assisting the designer of shalJow fluidized beds.
Resumo:
The English writing system is notoriously irregular in its orthography at the phonemic level. It was therefore proposed that focusing beginner-spellers’ attention on sound-letter relations at the sub-syllabic level might improve spelling performance. This hypothesis was tested in Experiments 1 and 2 using a ‘clue word’ paradigm to investigate the effect of analogy teaching intervention / non-intervention on the spelling performance of an experimental group and controls. The results overall showed the intervention to be effective in improving spelling, and this effect to be enduring. Experiment 3 demonstrated a greater application of analogy in spelling, when clue words, which participants used in analogy to spell test words, remained in view during testing. A series of regression analyses, with spelling entered as the criterion variable and age, analogy and phonological plausibility (PP) as predictors, showed both analogy and PP to be highly predictive of spelling. Experiment 4 showed that children could use analogy to improve their spelling, even without intervention, by comparing their performance in spelling words presented in analogous categories or in random lists. Consideration of children’s patterns of analogy use at different points of development showed three age groups to use similar patterns of analogy, but contrasting analogy patterns for spelling different words. This challenges stage theories of analogy use in literacy. Overall the most salient units used in analogy were the rime and, to a slightly lesser degree, the onset-vowel and vowel. Finally, Experiment 5 showed analogy and phonology to be fairly equally influential in spelling, but analogy to be more influential than phonology in reading. Five separate experiments therefore found analogy to be highly influential in spelling. Experiment 5 also considered the role of memory and attention in literacy attainment. The important implications of this research are that analogy, rather than purely phonics-based strategy, is instrumental in correct spelling in English.
Resumo:
An investigator may also wish to select a small subset of the X variables which give the best prediction of the Y variable. In this case, the question is how many variables should the regression equation include? One method would be to calculate the regression of Y on every subset of the X variables and choose the subset that gives the smallest mean square deviation from the regression. Most investigators, however, prefer to use a ‘stepwise multiple regression’ procedure. There are two forms of this analysis called the ‘step-up’ (or ‘forward’) method and the ‘step-down’ (or ‘backward’) method. This Statnote illustrates the use of stepwise multiple regression with reference to the scenario introduced in Statnote 24, viz., the influence of climatic variables on the growth of the crustose lichen Rhizocarpon geographicum (L.)DC.
Resumo:
In previous statnotes, the application of correlation and regression methods to the analysis of two variables (X,Y) was described. The most important statistic used to measure the degree of correlation between two variables is Pearson’s ‘product moment correlation coefficient’ (‘r’). The correlation between two variables may be due to their common relation to other variables. Hence, investigators using correlation studies need to be alert to the possibilities of spurious correlation and the methods of ‘partial correlation’ are one method of taking this into account. This statnote applies the methods of partial correlation to three scenarios. First, to a fairly obvious example of a spurious correlation resulting from the ‘size effect’ involving the relationship between the number of general practitioners (GP) and the number of deaths of patients in a town. Second, to the relationship between the abundance of the nitrogen-fixing bacterium Azotobacter in soil and three soil variables, and finally, to a more complex scenario, first introduced in Statnote 24involving the relationship between the growth of lichens in the field and climate.
Resumo:
Purpose: To determine whether curve-fitting analysis of the ranked segment distributions of topographic optic nerve head (ONH) parameters, derived using the Heidelberg Retina Tomograph (HRT), provide a more effective statistical descriptor to differentiate the normal from the glaucomatous ONH. Methods: The sample comprised of 22 normal control subjects (mean age 66.9 years; S.D. 7.8) and 22 glaucoma patients (mean age 72.1 years; S.D. 6.9) confirmed by reproducible visual field defects on the Humphrey Field Analyser. Three 10°-images of the ONH were obtained using the HRT. The mean topography image was determined and the HRT software was used to calculate the rim volume, rim area to disc area ratio, normalised rim area to disc area ratio and retinal nerve fibre cross-sectional area for each patient at 10°-sectoral intervals. The values were ranked in descending order, and each ranked-segment curve of ordered values was fitted using the least squares method. Results: There was no difference in disc area between the groups. The group mean cup-disc area ratio was significantly lower in the normal group (0.204 ± 0.16) compared with the glaucoma group (0.533 ± 0.083) (p < 0.001). The visual field indices, mean deviation and corrected pattern S.D., were significantly greater (p < 0.001) in the glaucoma group (-9.09 dB ± 3.3 and 7.91 ± 3.4, respectively) compared with the normal group (-0.15 dB ± 0.9 and 0.95 dB ± 0.8, respectively). Univariate linear regression provided the best overall fit to the ranked segment data. The equation parameters of the regression line manually applied to the normalised rim area-disc area and the rim area-disc area ratio data, correctly classified 100% of normal subjects and glaucoma patients. In this study sample, the regression analysis of ranked segment parameters method was more effective than conventional ranked segment analysis, in which glaucoma patients were misclassified in approximately 50% of cases. Further investigation in larger samples will enable the calculation of confidence intervals for normality. These reference standards will then need to be investigated for an independent sample to fully validate the technique. Conclusions: Using a curve-fitting approach to fit ranked segment curves retains information relating to the topographic nature of neural loss. Such methodology appears to overcome some of the deficiencies of conventional ranked segment analysis, and subject to validation in larger scale studies, may potentially be of clinical utility for detecting and monitoring glaucomatous damage. © 2007 The College of Optometrists.