33 resultados para Paper production


Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is well established that speech, language and phonological skills are closely associated with literacy, and that children with a family risk of dyslexia (FRD) tend to show deficits in each of these areas in the preschool years. This paper examines what the relationships are between FRD and these skills, and whether deficits in speech, language and phonological processing fully account for the increased risk of dyslexia in children with FRD. One hundred and fifty-three 4-6-year-old children, 44 of whom had FRD, completed a battery of speech, language, phonology and literacy tasks. Word reading and spelling were retested 6 months later, and text reading accuracy and reading comprehension were tested 3 years later. The children with FRD were at increased risk of developing difficulties in reading accuracy, but not reading comprehension. Four groups were compared: good and poor readers with and without FRD. In most cases good readers outperformed poor readers regardless of family history, but there was an effect of family history on naming and nonword repetition regardless of literacy outcome, suggesting a role for speech production skills as an endophenotype of dyslexia. Phonological processing predicted spelling, while language predicted text reading accuracy and comprehension. FRD was a significant additional predictor of reading and spelling after controlling for speech production, language and phonological processing, suggesting that children with FRD show additional difficulties in literacy that cannot be fully explained in terms of their language and phonological skills. It is well established that speech, language and phonological skills are closely associated with literacy, and that children with a family risk of dyslexia (FRD) tend to show deficits in each of these areas in the preschool years. This paper examines what the relationships are between FRD and these skills, and whether deficits in speech, language and phonological processing fully account for the increased risk of dyslexia in children with FRD. One hundred and fifty-three 4-6-year-old children, 44 of whom had FRD, completed a battery of speech, language, phonology and literacy tasks. © 2014 John Wiley & Sons Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Emulsions and microcapsules are typical structures in various dispersion formulations for pharmaceutical, food, personal and house care applications. Precise control over size and size distribution of emulsion droplets and microcapsules are important for effective use and delivery of active components and better product quality. Many emulsification technologies have been developed to meet different formulation and processing requirements. Among them, membrane and microfluidic emulsification as emerging technologies have the feature of being able to precisely manufacture droplets in a drop-by-drop manner to give subscribed sizes and size distributions with lower energy consumption. This paper reviews fundamental sciences and engineering aspects of emulsification, membrane and microfluidic emulsification technologies and their use for precision manufacture of emulsions for intensified processing. Generic application examples are given for single and double emulsions and microcapsules with different structure features. © 2013 The Society of Powder Technology Japan. Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of vacuum, slow and fast pyrolysis processes to transfer energy from the paper waste sludge (PWS) to liquid and solid products was compared. Paper waste sludges with low and high ash content (8.5 and 46.7 wt.%) were converted under optimised conditions for temperature and pellet size to maximise both product yields and energy content. Comparison of the gross energy conversions, as a combination of the bio-oil/tarry phase and char (ECsum), revealed that the fast pyrolysis performance was between 18.5% and 20.1% higher for the low ash PWS, and 18.4% and 36.5% higher for high ash PWS, when compared to the slow and vacuum pyrolysis processes respectively. For both PWSs, this finding was mainly attributed to higher production of condensable organic compounds and lower water yields during FP. The low ash PWS chars, fast pyrolysis bio-oils and vacuum pyrolysis tarry phase products had high calorific values (∼18-23 MJ kg-1) making them promising for energy applications. Considering the low calorific values of the chars from alternative pyrolysis processes (∼4-7 MJ kg-1), the high ash PWS should rather be converted to fast pyrolysis bio-oil to maximise the recovery of usable energy products.