86 resultados para PREFRONTAL CORTICAL SLICES
Resumo:
Background/Aims: Positron emission tomography has been applied to study cortical activation during human swallowing, but employs radio-isotopes precluding repeated experiments and has to be performed supine, making the task of swallowing difficult. Here we now describe Synthetic Aperture Magnetometry (SAM) as a novel method of localising and imaging the brain's neuronal activity from magnetoencephalographic (MEG) signals to study the cortical processing of human volitional swallowing in the more physiological prone position. Methods: In 3 healthy male volunteers (age 28–36), 151-channel whole cortex MEG (Omega-151, CTF Systems Inc.) was recorded whilst seated during the conditions of repeated volitional wet swallowing (5mls boluses at 0.2Hz) or rest. SAM analysis was then performed using varying spatial filters (5–60Hz) before co-registration with individual MRI brain images. Activation areas were then identified using standard sterotactic space neuro-anatomical maps. In one subject repeat studies were performed to confirm the initial study findings. Results: In all subjects, cortical activation maps for swallowing could be generated using SAM, the strongest activations being seen with 10–20Hz filter settings. The main cortical activations associated with swallowing were in: sensorimotor cortex (BA 3,4), insular cortex and lateral premotor cortex (BA 6,8). Of relevance, each cortical region displayed consistent inter-hemispheric asymmetry, to one or other hemisphere, this being different for each region and for each subject. Intra-subject comparisons of activation localisation and asymmetry showed impressive reproducibility. Conclusion: SAM analysis using MEG is an accurate, repeatable, and reproducible method for studying the brain processing of human swallowing in a more physiological manner and provides novel opportunities for future studies of the brain-gut axis in health and disease.
Resumo:
Recent studies of areas V1 and MT in the visual cortex show that exposure to a stimulus can change the contrast sensitivity of cells and shift their peak sensitivity to a new orientation or movement direction. In MT, these shifts can correctly predict illusory changes - visual aftereffects - in movement direction, but in V1, they are more difficult to interpret.
Resumo:
The loss of dopamine in idiopathic or animal models of Parkinson's disease induces synchronized low-frequency oscillatory burst-firing in subthalamic nucleus neurones. We sought to establish whether these firing patterns observed in vivo were preserved in slices taken from dopamine-depleted animals, thus establishing a role for the isolated subthalamic-globus pallidus complex in generating the pathological activity. Mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) showed significant reductions of over 90% in levels of dopamine as measured in striatum by high pressure liquid chromatography. Likewise, significant reductions in tyrosine hydroxylase immunostaining within the striatum (>90%) and tyrosine hydroxylase positive cell numbers (65%) in substantia nigra were observed. Compared with slices from intact mice, neurones in slices from MPTP-lesioned mice fired significantly more slowly (mean rate of 4.2 Hz, cf. 7.2 Hz in control) and more irregularly (mean coefficient of variation of inter-spike interval of 94.4%, cf. 37.9% in control). Application of ionotropic glutamate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 2-amino-5-phosphonopentanoic acid (AP5) and the GABAA receptor antagonist picrotoxin caused no change in firing pattern. Bath application of dopamine significantly increased cell firing rate and regularized the pattern of activity in cells from slices from both MPTP-treated and control animals. Although the absolute change was more modest in control slices, the maximum dopamine effect in the two groups was comparable. Indeed, when taking into account the basal firing rate, no differences in the sensitivity to dopamine were observed between these two cohorts. Furthermore, pairs of subthalamic nucleus cells showed no correlated activity in slices from either control (21 pairs) or MPTP-treated animals (20 pairs). These results indicate that the isolated but interconnected subthalamic-globus pallidus network is not itself sufficient to generate the aberrant firing patterns in dopamine-depleted animals. More likely, inputs from other regions, such as the cortex, are needed to generate pathological oscillatory activity. © 2006 IBRO.
Resumo:
The roots of the concept of cortical columns stretch far back into the history of neuroscience. The impulse to compartmentalise the cortex into functional units can be seen at work in the phrenology of the beginning of the nineteenth century. At the beginning of the next century Korbinian Brodmann and several others published treatises on cortical architectonics. Later, in the middle of that century, Lorente de No writes of chains of ‘reverberatory’ neurons orthogonal to the pial surface of the cortex and called them ‘elementary units of cortical activity’. This is the first hint that a columnar organisation might exist. With the advent of microelectrode recording first Vernon Mountcastle (1957) and then David Hubel and Torsten Wiesel provided evidence consistent with the idea that columns might constitute units of physiological activity. This idea was backed up in the 1970s by clever histochemical techniques and culminated in Hubel and Wiesel’s well-known ‘ice-cube’ model of the cortex and Szentogathai’s brilliant iconography. The cortical column can thus be seen as the terminus ad quem of several great lines of neuroscientific research: currents originating in phrenology and passing through cytoarchitectonics; currents originating in neurocytology and passing through Lorente de No. Famously, Huxley noted the tragedy of a beautiful hypothesis destroyed by an ugly fact. Famously, too, human visual perception is orientated toward seeing edges and demarcations when, perhaps, they are not there. Recently the concept of cortical columns has come in for the same radical criticism that undermined the architectonics of the early part of the twentieth century. Does history repeat itself? This paper reviews this history and asks the question.
Resumo:
We contend that powerful group studies can be conducted using magnetoencephalography (MEG), which can provide useful insights into the approximate distribution of the neural activity detected with MEG without requiring magnetic resonance imaging (MRI) for each participant. Instead, a participant's MRI is approximated with one chosen as a best match on the basis of the scalp surface from a database of available MRIs. Because large inter-individual variability in sulcal and gyral patterns is an inherent source of blurring in studies using grouped functional activity, the additional error introduced by this approximation procedure has little effect on the group results, and offers a sufficiently close approximation to that of the participants to yield a good indication of the true distribution of the grouped neural activity. T1-weighted MRIs of 28 adults were acquired in a variety of MR systems. An artificial functional image was prepared for each person in which eight 5 × 5 × 5 mm regions of brain activation were simulated. Spatial normalisation was applied to each image using transformations calculated using SPM99 with (1) the participant's actual MRI, and (2) the best matched MRI substituted from those of the other 27 participants. The distribution of distances between the locations of points using real and substituted MRIs had a modal value of 6 mm with 90% of cases falling below 12.5 mm. The effects of this -approach on real grouped SAM source imaging of MEG data in a verbal fluency task are also shown. The distribution of MEG activity in the estimated average response is very similar to that produced when using the real MRIs. © 2003 Wiley-Liss, Inc.
Resumo:
Development of the cerebral cortex is influenced by sensory experience during distinct phases of postnatal development known as critical periods. Disruption of experience during a critical period produces neurons that lack specificity for particular stimulus features, such as location in the somatosensory system. Synaptic plasticity is the agent by which sensory experience affects cortical development. Here, we describe, in mice, a developmental critical period that affects plasticity itself. Transient neonatal disruption of signaling via the C-terminal domain of "disrupted in schizophrenia 1" (DISC1)-a molecule implicated in psychiatric disorders-resulted in a lack of long-term potentiation (LTP) (persistent strengthening of synapses) and experience-dependent potentiation in adulthood. Long-term depression (LTD) (selective weakening of specific sets of synapses) and reversal of LTD were present, although impaired, in adolescence and absent in adulthood. These changes may form the basis for the cognitive deficits associated with mutations in DISC1 and the delayed onset of a range of psychiatric symptoms in late adolescence.
Resumo:
Clustering of ballooned neurons (BN) and tau positive neurons with inclusion bodies (tau+ neurons) was studied in the upper and lower laminae of the frontal, parietal and temporal cortex in 12 patients with corticobasal degeneration (CBD). In a significant proportion of brain areas examined, BN and tau+ neurons exhibited clustering with a regular distribution of clusters parallel to the pia mater. A regular pattern of clustering of BN and tau+ neurons was observed equally frequently in all cortical areas examined and in the upper and lower laminae. No significant correlations were observed between the cluster sizes of BN or tau+ neurons in the upper compared with the lower cortex or between the cluster sizes of BN and tau+ neurons. The results suggest that BN and tau+ neurons in CBD exhibit the same type of spatial pattern as lesions in Alzheimer's disease, Lewy body dementia and Pick's disease. The regular periodicity of the cerebral cortical lesions is consistent with the degeneration of the cortico-cortical projections in CBD.
Resumo:
The spatial pattern of cellular neurofibrillary tangles (NFT) was studied in the supra- and infragranular layers of various cortical regions in cases of Alzheimer's disease (AD). The objective was to test the hypothesis that NFT formation was associated with the cells of origin of specific cortico-cortical projections. The novel feature of the study was that pattern analysis enabled the dimension and spacing of NFT clusters along the cortical ribbon to be estimated. In the majority of brain regions studied, NFT occurred in clusters of neurons which were regularly spaced along the cortical strip. This pattern is consistent with the predicted distribution of the cells of origin of specific cortico-cortico projections. Mean NFT cluster size varied from 250 to > 12800 microns in different cortical tissues suggesting either variation in the size of the cell clusters or a dynamic process in the development of NFT in relation to these cell clusters. The formation of NFT in cell clusters which may give rise to the feed-forward and feed-back cortico-cortical projections suggests a possible route of spread of NFT pathology in AD between cortical regions and from the cortex to subcortical areas.
Resumo:
It is becoming clear that the detection and integration of synaptic input and its conversion into an output signal in cortical neurons are strongly influenced by background synaptic activity or "noise." The majority of this noise results from the spontaneous release of synaptic transmitters, interacting with ligand-gated ion channels in the postsynaptic neuron [Berretta N, Jones RSG (1996); A comparison of spontaneous synaptic EPSCs in layer V and layer II neurones in the rat entorhinal cortex in vitro. J Neurophysiol 76:1089-1110; Jones RSG, Woodhall GL (2005) Background synaptic activity in rat entorhinal cortical neurons: differential control of transmitter release by presynaptic receptors. J Physiol 562:107-120; LoTurco JJ, Mody I, Kriegstein AR (1990) Differential activation of glutamate receptors by spontaneously released transmitter in slices of neocortex. Neurosci Lett 114:265-271; Otis TS, Staley KJ, Mody I (1991) Perpetual inhibitory activity in mammalian brain slices generated by spontaneous GABA release. Brain Res 545:142-150; Ropert N, Miles R, Korn H (1990) Characteristics of miniature inhibitory postsynaptic currents in CA1 pyramidal neurones of rat hippocampus. J Physiol 428:707-722; Salin PA, Prince DA (1996) Spontaneous GABAA receptor-mediated inhibitory currents in adult rat somatosensory cortex. J Neurophysiol 75:1573-1588; Staley KJ (1999) Quantal GABA release: noise or not? Nat Neurosci 2:494-495; Woodhall GL, Bailey SJ, Thompson SE, Evans DIP, Stacey AE, Jones RSG (2005) Fundamental differences in spontaneous synaptic inhibition between deep and superficial layers of the rat entorhinal cortex. Hippocampus 15:232-245]. The function of synaptic noise has been the subject of debate for some years, but there is increasing evidence that it modifies or controls neuronal excitability and, thus, the integrative properties of cortical neurons. In the present study we have investigated a novel approach [Rudolph M, Piwkowska Z, Badoual M, Bal T, Destexhe A (2004) A method to estimate synaptic conductances from membrane potential fluctuations. J Neurophysiol 91:2884-2896] to simultaneously quantify synaptic inhibitory and excitatory synaptic noise, together with postsynaptic excitability, in rat entorhinal cortical neurons in vitro. The results suggest that this is a viable and useful approach to the study of the function of synaptic noise in cortical networks. © 2007 IBRO.
Resumo:
The frequency of morphological abnormalities in neuronal perikarya which were in contact with diffuse beta-amyloid (Abeta) deposits in patients with Alzheimer’s disease (AD) was compared with neurons located adjacent to the deposits. Morphological abnormalities were also studied in elderly, non-demented (ND) cases with and without diffuse Abeta deposits. In AD and ND cases with Abeta deposits, an increased proportion of neurons in contact with diffuse deposits exhibited at least one abnormality compared with neurons located adjacent to the deposits. Neurons in contact with diffuse deposits exhibited a greater frequency of abnormalities of shape, nuclei, nissl substance and had a higher frequency of cytoplasmic vacuoles compared with adjacent neurons. A greater frequency of abnormalities of shape, nissl substance and in the frequency of displaced nuclei were also observed in neurons adjacent to diffuse deposits in AD compared with ND cases. With the exception of absent nuclei, morphological abnormalities adjacent to diffuse deposits in ND cases were similar to those of ND cases without Abeta deposits. These results suggest that neuronal degeneration is associated with the earliest stages of Abeta deposit formation and is not specifically related to the formation of mature senile plaques.
Resumo:
The laminar distribution of Lewy bodies (LB) and neurofibrillary tangles (NFT) was studied in twelve cases of dementia with Lewy bodies (DLB). LB density was maximal in the lower cortex in 59% of cortical areas, in the upper cortex in 31% of areas while densities were similar in the upper and lower cortex in 9% of areas. The distribution of LB was either unimodal with a lower cortical peak, or bimodal with density peaks in the upper and lower cortex. The density of NFT was maximal in the upper cortex in all tissues. The distributions of LB and NFT were similar in temporal and frontal cortex and in cases with and without Alzheimer’s disease (AD). The vertical densities of LB and NFT were not significantly correlated. LB formation may affect the feedback cortico-cortical pathway and the efferent cortical projections whereas NFT formation may affect the feedforward cortico-cortical pathway.
Resumo:
The laminar distribution of senile plaques (SP) and neurofibrillary tangles (NFT) was studied in areas B17 and B18 of the visual cortex in 18 cases of Alzheimer’s disease which varied in disease onset and duration. The objective was to test the hypothesis that SP and NFT could spread via either the feedforward or feedback short cortico-cortical projections. In area B17, the mean density of SP and NFT reached a maximum in lamina III and in laminae II and III respectively. In B18, mean SP density was maximal in laminae III and IV and NFT density in laminae II and III. No significant correlations were observed in any cortical lamina between the density of SP and patient age. However, the density of NFT in laminae III, IV and VI in B18 was negatively correlated with patient age. In addition, in B18, the density of SP in lamina II and lamina V was negatively correlated with disease duration and disease onset respectively. Although these results suggest that SP and NFT might spread between B17 and B18 via the feedforward short cortico-cortical projections, it is also possible that the longer cortico-cortical and cortico-subcortical connections may be involved.