52 resultados para POORLY SOLUBLE API
Resumo:
Central venous catheters (CVCs) are being utilized with increasing frequency in intensive care and general medical wards. In spite of the extensive experience gained in their application, CVCs are related to the long-term risks of catheter sheath formation, infection, and thrombosis (of the catheter or vessel itself) during catheterization. Such CVC-related-complications are associated with increased morbidity, mortality, duration of hospitalization, and medical care cost [1]. The present study incorporates a novel group of Factor XIIIa (FXIIIa, plasma transglutaminase) inhibitors into a lubricious silicone elastomer in order to generate an optimized drug delivery system whereby a secondary sustained drug release profile occurs following an initial burst release for catheters and other medical devices. We propose that the incorporation of FXIIIa inhibitors into catheters, stents, and other medical implant devices would reduce the incidence of catheter sheath formation, thrombotic occlusion, and associated staphylococcal infection. This technique could be used as a local delivery system for extended release with an immediate onset of action for other poorly aqueous soluble compounds. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Web APIs have gained increasing popularity in recent Web service technology development owing to its simplicity of technology stack and the proliferation of mashups. However, efficiently discovering Web APIs and the relevant documentations on the Web is still a challenging task even with the best resources available on the Web. In this paper we cast the problem of detecting the Web API documentations as a text classification problem of classifying a given Web page as Web API associated or not. We propose a supervised generative topic model called feature latent Dirichlet allocation (feaLDA) which offers a generic probabilistic framework for automatic detection of Web APIs. feaLDA not only captures the correspondence between data and the associated class labels, but also provides a mechanism for incorporating side information such as labelled features automatically learned from data that can effectively help improving classification performance. Extensive experiments on our Web APIs documentation dataset shows that the feaLDA model outperforms three strong supervised baselines including naive Bayes, support vector machines, and the maximum entropy model, by over 3% in classification accuracy. In addition, feaLDA also gives superior performance when compared against other existing supervised topic models.
Resumo:
Background - The negative feedback system is an important physiological regulatory mechanism controlling angiogenesis. Soluble vascular endothelial growth factor (VEGF) receptor-1 (sFlt-1), acts as a potent endogenous soluble inhibitor of VEGF- and placenta growth factor (PlGF)-mediated biological function and can also form dominant-negative complexes with competent full-length VEGF receptors. Methods and results - Systemic overexpression of VEGF-A in mice resulted in significantly elevated circulating sFlt-1. In addition, stimulation of human umbilical vein endothelial cells (HUVEC) with VEGF-A, induced a five-fold increase in sFlt-1 mRNA, a time-dependent significant increase in the release of sFlt-1 into the culture medium and activation of the flt-1 gene promoter. This response was dependent on VEGF receptor-2 (VEGFR-2) and phosphoinositide-3'-kinase signalling. siRNA-mediated knockdown of sFlt-1 in HUVEC stimulated the activation of endothelial nitric oxide synthase, increased basal and VEGF-induced cell migration and enhanced endothelial tube formation on growth factor reduced Matrigel. In contrast, adenoviral overexpression of sFlt-1 suppressed phosphorylation of VEGFR-2 at tyrosine 951 and ERK-1/-2 MAPK and reduced HUVEC proliferation. Preeclampsia is associated with elevated placental and systemic sFlt-1. Phosphorylation of VEGFR-2 tyrosine 951 was greatly reduced in placenta from preeclamptic patients compared to gestationally-matched normal placenta. Conclusion - These results show that endothelial sFlt-1 expression is regulated by VEGF and acts as an autocrine regulator of endothelial cell function.
Resumo:
Aims - Endothelial dysfunction is a hallmark of preeclampsia. Desensitization of the phosphoinositide 3-kinase (PI3K)/Akt pathway underlies endothelial dysfunction and haeme oxygenase-1 (HO-1) is decreased in preeclampsia. To identify therapeutic targets, we sought to assess whether these two regulators act to suppress soluble endoglin (sEng), an antagonist of transforming growth factor-ß (TGF-ß) signalling, which is known to be elevated in preeclampsia. Methods and results - Vascular endothelial growth factor-A (VEGF-A), fibroblast growth factor (FGF-2), angiopoietin-1 (Ang-1), and insulin, which all activate the PI3K/Akt pathway, inhibited the release of sEng from endothelial cells. Inhibition of the PI3K/Akt pathway, by overexpression of phosphatase and tensin homolog (PTEN) or a dominant-negative isoform of Akt (Aktdn) induced sEng release from endothelial cells and prevented the inhibitory effect of VEGF-A. Conversely, overexpression of a constitutively active Akt (Aktmyr) inhibited PTEN and cytokine-induced sEng release. Systemic delivery of Aktmyr to mice significantly reduced circulating sEng, whereas Aktdn promoted sEng release. Phosphorylation of Akt was reduced in preeclamptic placenta and this correlated with the elevated level of circulating sEng. Knock-down of Akt using siRNA prevented HO-1-mediated inhibition of sEng release and reduced HO-1 expression. Furthermore, HO-1 null mice have reduced phosphorylated Akt in their organs and overexpression of Aktmyr failed to suppress the elevated levels of sEng detected in HO-1 null mice, indicating that HO-1 is required for the Akt-mediated inhibition of sEng. Conclusion - The loss of PI3K/Akt and/or HO-1 activity promotes sEng release and positive manipulation of these pathways offers a strategy to circumvent endothelial dysfunction.
Resumo:
New peptidic water-soluble inhibitors are reported. In addition to the carboxylate moiety, a new polar warhead was explored. Depending on the size of its substituents, the newly appended imidazolium scaffold designed to enhance the hydrophilic character of the inhibitors could induce a good inhibition for tissue transglutaminase (TG2) and blood coagulation factor XIIIa (FXIIIa). Correlated with the narrow tunnel that hosts the target catalytic cysteine residue, the various modulations suggest a bent conformation of the ligands as the binding pattern mode. Analogues in the dialkylsulfonium series were also tested and showed specificity for TG2 over FXIIIa. © 2013 Elsevier Masson SAS. All rights reserved.
Resumo:
In symbiotic lichens which have Trebouxia as the algal partner, photosynthesis by the algae results in the production of the soluble carbohydrate ribitol which is then transported to the fungus where it is converted to arabitol and mannitol. Within the fungus, arabitol may act as a short-term carbohydrate reserve while mannitol may have a more protective function and be important in stress resistance. The concentrations of ribitol, arabitol, and mannitol were measured, using gas chromatography, in the central areolae and marginal hypothallus of the crustose lichen Rhizocarpon geographicum (L.) DC. growing on slate rocks in north Wales, UK. The concentrations of all three soluble carbohydrates were greater in the central areolae than in the marginal prothallus. In addition, the ratio of mannitol in the prothallus to that in the areolae was least in July. The concentration of an individual carbohydrate in the prothallus was correlated primarily with the concentrations of the other carbohydrates in the prothallus and not to their concentrations in the areolae. Low concentration of ribitol, arabitol, and mannitol in the marginal prothallus compared with the central areolae suggests either a lower demand for carbohydrate by the prothallus or limited transport from areolae to prothallus and may explain the low growth rates of this species. In addition, soluble carbohydrates appear to be partitioned differently through the year with an increase in mannitol compared with arabitol in more stressful periods.
Resumo:
A simple elementary osmotic pump (EOP) system that could deliver metformin hydrochloride (MT) and glipizide (GZ) simultaneously for extended periods of time was developed in order to reduce the problems associated with multidrug therapy of type 2 non-insulin-dependent diabetes mellitus. In general, both highly and poorly water-soluble drugs are not good candidates for elementary osmotic delivery. However, MT is a highly soluble drug with a high dose (500 mg) while GZ is a water-insoluble drug with a low dose (5 mg) so it is a great challenge to pharmacists to provide satisfactory extended release of MT and GZ. In this paper sodium carbonate was used to modulate the solubility of GZ within the core and MT was not only one of the active ingredients but also the osmotic agent. The optimal EOP was found to deliver both drugs at a rate of approximately zero order for up to 10 h in pH 6.8, independent of environment media. In-vivo evaluation was performed relative to the equivalent dose of conventional MT tablet and GZ tablet by a cross-study in six Beagle dogs. The EOP had a good sustained effect in comparison with the conventional product. The prototype design of the system could be applied to other combinations of drugs used for cardiovascular diseases, diabetes, etc.
Resumo:
Background: Proliferative diabetic retinopathy (PDR) may be a response to abnormal angiogenic growth factors such as vascular endothelial growth factor (VEGF), angiopoietin-2 (Ang-2), and the soluble angiopoietin receptor tie-2. The authors hypothesised the following: (a) there are differences in plasma levels of these growth factors in different grades of diabetic retinopathy; and (b) that the effects of intervention with panretinal laser photocoagulation (PRP) for PDR, and angiotensin receptor blockade (using eprosartan) for patients with other grades of diabetic retinopathy will be to reduce levels of the growth factors. Methods: Cross sectional and interventional study (using PRP and eprosartan) in diabetic patients. VEGF, Ang-2, and tie-2 were measured by ELISA. Results: VEGF (p<0.001) and Ang-2 levels (p<0.001) were significantly higher in 93 diabetic patients compared to 20 healthy controls, with the highest levels in grade 2 and grade 3 diabetic retinopathy (p<0.05). Tie-2 was lower in diabetics compared to controls (p = 0.008), with no significant differences between the diabetic subgroups. Overall, VEGF significantly correlated with Ang-2 (p<0.001) and tie-2 (p = 0.004) but the correlation between Ang-2 and tie-2 levels was not significant (p = 0.065). Among diabetic patients only, VEGF levels were significantly correlated with Ang-2 (p<0.001) and tie-2 (p<0.001); the correlation between Ang-2 and tie-2 levels was also significant (p<0.001). There were no statistically significant effects of laser photocoagulation on plasma VEGF, Ang-2, and tie-2 in the 19 patients with PDR, or any effects of eprosartan in the 28 patients with non-proliferative diabetic retinopathy. Conclusion: Increased plasma levels of VEGF and Ang-2, as well as lower soluble tie-2, were found in diabetic patients. The highest VEGF and Ang-2 levels were seen among patients with pre-proliferative and proliferative retinopathy, but there was no relation of tie-2 to the severity of retinopathy. As the majority of previous research into Ang-2 and tie-2 has been in relation to angiogenesis and malignancy, the present study would suggest that Ang-2 and tie-2 may be used as potential indices of angiogenesis in diabetes mellitus (in addition to VEGF) and may help elucidate the role of the angiopoietin/tie-2 system in this condition.
Resumo:
Preeclampsia is characterized clinically by hypertension and proteinuria. Soluble Flt-1 (sFlt-1; also known as soluble vascular endothelial growth factor receptor-1 [VEGFR-1]) and soluble endoglin (sEng) are elevated in preeclampsia, and their administration to pregnant rats elicits preeclampsia-like symptoms. Heme oxygenase-1 (HO-1) and its metabolite carbon monoxide (CO) exert protective effects against oxidative stimuli. Thus, we hypothesized that HO-1 upregulation may offer protection against preeclampsia by inhibiting sFlt-1 and sEng release.
Resumo:
Maternal endothelial dysfunction in preeclampsia is associated with increased soluble fms-like tyrosine kinase-1 (sFlt-1), a circulating antagonist of vascular endothelial growth factor and placental growth factor. Angiotensin II (Ang II) is a potent vasoconstrictor that increases concomitant with sFlt-1 during pregnancy. Therefore, we speculated that Ang II may promote the expression of sFlt-1 in pregnancy. Here we report that infusion of Ang II significantly increases circulating levels of sFlt-1 in pregnant mice, thereby demonstrating that Ang II is a regulator of sFlt-1 secretion in vivo. Furthermore, Ang II stimulated sFlt-1 production in a dose- and time-dependent manner from human villous explants and cultured trophoblasts but not from endothelial cells, suggesting that trophoblasts are the primary source of sFlt-1 during pregnancy. As expected, Ang II-induced sFlt-1 secretion resulted in the inhibition of endothelial cell migration and in vitro tube formation. In vitro and in vivo studies with losartan, small interfering RNA specific for calcineurin and FK506 demonstrated that Ang II-mediated sFlt-1 release was via Ang II type 1 receptor activation and calcineurin signaling, respectively. These findings reveal a previously unrecognized regulatory role for Ang II on sFlt-1 expression in murine and human pregnancy and suggest that elevated sFlt-1 levels in preeclampsia may be caused by a dysregulation of the local renin/angiotensin system.
Resumo:
Preeclampsia is an inflammatory disorder in which serum levels of vascular endothelial growth factor (VEGF) and its soluble receptor-1 (sVEGFR-1, also known as sFlt-1) are elevated. We hypothesize that VEGF and placenta growth factor (PlGF) are dysregulated in preeclampsia due to high levels of sVEGFR-1, which leads to impaired placental angiogenesis. Analysis of supernatants taken from preeclamptic placental villous explants showed a four-fold increase in sVEGFR-1 than normal pregnancies, suggesting that villous explants in vitro retain a hypoxia memory reflecting long-term fetal programming. The relative ratios of VEGF to sVEGFR-1and PlGF to sVEGFR-1 released from explants decreased by 53% and 70%, respectively, in preeclampsia compared with normal pregnancies. Exposure of normal villous explants to hypoxia increased sVEGFR-1 release compared with tissue normoxia (P<0.001), as did stimulation with tumor necrosis factor-α (P<0.01). Conditioned medium (CM) from normal villous explants induced endothelial cell migration and in vitro tube formation, which were both attenuated by pre-incubation with exogenous sVEGFR-1 (P<0.001). In contrast, endothelial cells treated with preeclamptic CM showed substantially reduced angiogenesis compared withnormal CM (P<0.001), which was not further decreased by the addition of exogenous sVEGFR-1, indicating a saturation of the soluble receptor.Removal of sVEGFR-1 by immunoprecipitation from preeclamptic CM significantly restored migration (P<0.001) and tube formation (P<0.001) to levels comparable to that induced by normal CM, demonstrating that elevated levels of sVEGFR-1 in preeclampsia are responsible for inhibiting angiogenesis. Our finding demonstrates the dysregulation of the VEGF/PlGF axis in preeclampsiaand offers an entirely new therapeutic approach to its treatment.
Resumo:
Differential splicing of the flt-1 mRNA generates soluble variant of vascular endothelial growth factor (VEGF) receptor-1 (sVEGFR-1, also known as sFlt-1). The action of VEGF is antagonized by sVEGFR-1. Soluble VEGFR-1 binds to VEGF with a high affinity and therefore works to modulate VEGF and VEGF signaling pathway. In this study, the authors tested the hypothesis that VEGF-mediated endothelial cell angiogenesis is tightly modulated by the release of sVEGFR-1 and placental expression of sVEGFR-1 is upregulated by hypoxia. Immunolocalization studies showed progressively intense staining for sVEGFR-1 and VEGF in the trophoblast of placental villous explants throughout gestation. Endothelial cell migration studies using a modified Boyden's chamber showed a significant increase in cell migration in response to VEGF that was significantly attenuated in the presence of exogenous sVEGFR-1. Furthermore, stimulation of endothelial cells with VEGF led to a dose-dependent increase in the release of sVEGFR-1 as determined by enzyme-linked immunosorbent assay (ELISA). Exposure of normal placental villous explants to hypoxia (1% pO2) increased trophoblast expression of sVEGFR-1 when compared with tissue normoxia (5% pO2). In addition, conditioned media from hypoxia treated placental villous explants induced a significant increase in endothelial cell migration that was significantly reduced in presence of sVEGFR-1. Our study demonstrates that hypoxia positively regulates sVEGFR-1 protein expression in ex vivo trophoblasts, which control VEGF-driven angiogenesis.
Resumo:
Objective - Soluble vascular endothelial growth factor receptor–1 (also know as soluble fms-like tyrosine kinase [sFlt]-1) is a key causative factor of preeclampsia. Resveratrol, a plant phytoalexin, has antiinflammatory and cardioprotective properties. We sought to determine the effect of resveratrol on sFlt-1 release. Study Design - Human umbilical vein endothelial cells, transformed human trophoblast-8 (HTR/SVneo)-8/SVneo trophoblast cells, or placental explants were incubated with cytokines and/or resveratrol. Conditioned media were assayed for sFlt-1 by enzyme-linked immunosorbent assay and cell proteins used for Western blotting. Results - Resveratrol inhibited cytokine-induced release of sFlt-1 from normal placental explants and from preeclamptic placental explants. Preincubation of human umbilical vein endothelial cells or HTR-8/SVneo cells with resveratrol abrogated sFlt-1 release. Resveratrol prevented the up-regulation of early growth response protein-1 (Egr-1), a transcription factor necessary for induction of the vascular endothelial growth factor receptor–1 gene and caused up-regulation of heme oxygenase–1, a cytoprotective enzyme found to be dysfunctional in preeclampsia. Conclusion - In summary, resveratrol can inhibit sFlt-1 release and up-regulate heme oxygenase–1; thus, may offer therapeutic potential in preeclampsia.
Resumo:
Background—Alterations in circulating levels of pro- and antiangiogenic factors have been associated with adverse pregnancy outcomes. Heparin is routinely administered to pregnant women, but without clear knowledge of its impact on these factors. Methods and Results—We conducted a longitudinal study of 42 pregnant women. Twenty-one women received prophylactic heparin anticoagulation, and 21 healthy pregnant women served as controls. Compared with gestational age-matched controls, heparin treatment was associated with increased circulating levels of soluble fms-like tyrosine kinase-1 (sFlt-1) in the third trimester (P<0.05), in the absence of preeclampsia, placental abruption, or fetal growth restriction. Heparin had no effect on circulating levels of vascular endothelial growth factor, placenta growth factor, or soluble endoglin as assessed by ELISA. In vitro, low-molecular weight and unfractionated heparins stimulated sFlt-1 release from placental villous explants, in a dose- and time-dependent manner. This effect was not due to placental apoptosis, necrosis, alteration in protein secretion, or increased transcription. Western blot analysis demonstrated that heparin induced shedding of the N-terminus of Flt-1 both in vivo and in vitro as indicated by a predominant band of 100–112 kDa. By using an in vitro angiogenesis assay, we demonstrated that serum of heparin-treated cases inhibited both basal and vascular endothelial growth factor-induced capillary-like tube formation. Conclusions—Heparin likely increases the maternal sFlt-1 through shedding of the extracellular domain of Flt-1 receptor. Our results imply that upregulation of circulating sFlt-1 immunoreactivity in pregnancy is not always associated with adverse outcomes, and that heparin's protective effects, if any, cannot be explained by promotion of angiogenesis.
Resumo:
Preeclampsia is a hypertensive disorder of pregnancy caused by abnormal placental function, partly because of chronic hypoxia at the utero-placental junction. The increase in levels of soluble vascular endothelial growth factor receptor 1, an antiangiogenic agent known to inhibit placental vascularization, is an important cellular factor implicated in the onset of preeclampsia. We investigated the ligand urotensin II (U-II), a potent endogenous vasoconstrictor and proangiogenic agent, for which levels have been reported to increase in patients with preeclampsia. We hypothesized that an increased sensitivity to U-II in preeclampsia might be achieved by upregulation of placental U-II receptors. We further investigated the role of U-II receptor stimulation on soluble vascular endothelial growth factor receptor 1 release in placental explants from diseased and normal patients. Immunohistochemistry, real-time PCR, and Western blotting analysis revealed that U-II receptor expression was significantly upregulated in preeclampsia placentas compared with controls (P<0.01). Cellular models of syncytiotrophoblast and vascular endothelial cells subjected to hypoxic conditions revealed an increase in U-II receptor levels in the syncytiotrophoblast model. This induction is regulated by the transcriptional activator hypoxia-inducible factor 1a. U-II treatment is associated with increased secretion of soluble vascular endothelial growth factor receptor 1 only in preeclamptic placental explants under hypoxia but not in control conditions. Interestingly, normal placental explants did not respond to U-II stimulation.