45 resultados para Optimal control systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have proposed a novel robust inversion-based neurocontroller that searches for the optimal control law by sampling from the estimated Gaussian distribution of the inverse plant model. However, for problems involving the prediction of continuous variables, a Gaussian model approximation provides only a very limited description of the properties of the inverse model. This is usually the case for problems in which the mapping to be learned is multi-valued or involves hysteritic transfer characteristics. This often arises in the solution of inverse plant models. In order to obtain a complete description of the inverse model, a more general multicomponent distributions must be modeled. In this paper we test whether our proposed sampling approach can be used when considering an arbitrary conditional probability distributions. These arbitrary distributions will be modeled by a mixture density network. Importance sampling provides a structured and principled approach to constrain the complexity of the search space for the ideal control law. The effectiveness of the importance sampling from an arbitrary conditional probability distribution will be demonstrated using a simple single input single output static nonlinear system with hysteretic characteristics in the inverse plant model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the direct adaptive inverse control of nonlinear multivariable systems with different delays between every input-output pair. In direct adaptive inverse control, the inverse mapping is learned from examples of input-output pairs. This makes the obtained controller sub optimal, since the network may have to learn the response of the plant over a larger operational range than necessary. Moreover, in certain applications, the control problem can be redundant, implying that the inverse problem is ill posed. In this paper we propose a new algorithm which allows estimating and exploiting uncertainty in nonlinear multivariable control systems. This approach allows us to model strongly non-Gaussian distribution of control signals as well as processes with hysteresis. The proposed algorithm circumvents the dynamic programming problem by using the predicted neural network uncertainty to localise the possible control solutions to consider.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main theme of research of this project concerns the study of neutral networks to control uncertain and non-linear control systems. This involves the control of continuous time, discrete time, hybrid and stochastic systems with input, state or output constraints by ensuring good performances. A great part of this project is devoted to the opening of frontiers between several mathematical and engineering approaches in order to tackle complex but very common non-linear control problems. The objectives are: 1. Design and develop procedures for neutral network enhanced self-tuning adaptive non-linear control systems; 2. To design, as a general procedure, neural network generalised minimum variance self-tuning controller for non-linear dynamic plants (Integration of neural network mapping with generalised minimum variance self-tuning controller strategies); 3. To develop a software package to evaluate control system performances using Matlab, Simulink and Neural Network toolbox. An adaptive control algorithm utilising a recurrent network as a model of a partial unknown non-linear plant with unmeasurable state is proposed. Appropriately, it appears that structured recurrent neural networks can provide conveniently parameterised dynamic models for many non-linear systems for use in adaptive control. Properties of static neural networks, which enabled successful design of stable adaptive control in the state feedback case, are also identified. A survey of the existing results is presented which puts them in a systematic framework showing their relation to classical self-tuning adaptive control application of neural control to a SISO/MIMO control. Simulation results demonstrate that the self-tuning design methods may be practically applicable to a reasonably large class of unknown linear and non-linear dynamic control systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper introduces responsive systems: systems that are real-time, event-based, or time-dependent. There are a number of trends that are accelerating the adoption of responsive systems: timeliness requirements for business information systems are becoming more prevalent, embedded systems are increasingly integrated into soft real-time command-and-control systems, improved message-oriented middleware is facilitating growth in event-processing applications, and advances in service-oriented and component-based techniques are lowering the costs of developing and deploying responsive applications. The use of responsive systems is illustrated here in two application areas: the defense industry and online gaming. The papers in this special issue of the IBM Systems Journal are then introduced. The paper concludes with a discussion of the key remaining challenges in this area and ideas for further work.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Modern distributed control systems comprise of a set of processors which are interconnected using a suitable communication network. For use in real-time control environments, such systems must be deterministic and generate specified responses within critical timing constraints. Also, they should be sufficiently robust to survive predictable events such as communication or processor faults. This thesis considers the problem of coordinating and synchronizing a distributed real-time control system under normal and abnormal conditions. Distributed control systems need to periodically coordinate the actions of several autonomous sites. Often the type of coordination required is the all or nothing property of an atomic action. Atomic commit protocols have been used to achieve this atomicity in distributed database systems which are not subject to deadlines. This thesis addresses the problem of applying time constraints to atomic commit protocols so that decisions can be made within a deadline. A modified protocol is proposed which is suitable for real-time applications. The thesis also addresses the problem of ensuring that atomicity is provided even if processor or communication failures occur. Previous work has considered the design of atomic commit protocols for use in non time critical distributed database systems. However, in a distributed real-time control system a fault must not allow stringent timing constraints to be violated. This thesis proposes commit protocols using synchronous communications which can be made resilient to a single processor or communication failure and still satisfy deadlines. Previous formal models used to design commit protocols have had adequate state coverability but have omitted timing properties. They also assumed that sites communicated asynchronously and omitted the communications from the model. Timed Petri nets are used in this thesis to specify and design the proposed protocols which are analysed for consistency and timeliness. Also the communication system is mcxielled within the Petri net specifications so that communication failures can be included in the analysis. Analysis of the Timed Petri net and the associated reachability tree is used to show the proposed protocols always terminate consistently and satisfy timing constraints. Finally the applications of this work are described. Two different types of applications are considered, real-time databases and real-time control systems. It is shown that it may be advantageous to use synchronous communications in distributed database systems, especially if predictable response times are required. Emphasis is given to the application of the developed commit protocols to real-time control systems. Using the same analysis techniques as those used for the design of the protocols it can be shown that the overall system performs as expected both functionally and temporally.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hard real-time systems are a class of computer control systems that must react to demands of their environment by providing `correct' and timely responses. Since these systems are increasingly being used in systems with safety implications, it is crucial that they are designed and developed to operate in a correct manner. This thesis is concerned with developing formal techniques that allow the specification, verification and design of hard real-time systems. Formal techniques for hard real-time systems must be capable of capturing the system's functional and performance requirements, and previous work has proposed a number of techniques which range from the mathematically intensive to those with some mathematical content. This thesis develops formal techniques that contain both an informal and a formal component because it is considered that the informality provides ease of understanding and the formality allows precise specification and verification. Specifically, the combination of Petri nets and temporal logic is considered for the specification and verification of hard real-time systems. Approaches that combine Petri nets and temporal logic by allowing a consistent translation between each formalism are examined. Previously, such techniques have been applied to the formal analysis of concurrent systems. This thesis adapts these techniques for use in the modelling, design and formal analysis of hard real-time systems. The techniques are applied to the problem of specifying a controller for a high-speed manufacturing system. It is shown that they can be used to prove liveness and safety properties, including qualitative aspects of system performance. The problem of verifying quantitative real-time properties is addressed by developing a further technique which combines the formalisms of timed Petri nets and real-time temporal logic. A unifying feature of these techniques is the common temporal description of the Petri net. A common problem with Petri net based techniques is the complexity problems associated with generating the reachability graph. This thesis addresses this problem by using concurrency sets to generate a partial reachability graph pertaining to a particular state. These sets also allows each state to be checked for the presence of inconsistencies and hazards. The problem of designing a controller for the high-speed manufacturing system is also considered. The approach adopted mvolves the use of a model-based controller: This type of controller uses the Petri net models developed, thus preservIng the properties already proven of the controller. It. also contains a model of the physical system which is synchronised to the real application to provide timely responses. The various way of forming the synchronization between these processes is considered and the resulting nets are analysed using concurrency sets.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There is an increasing emphasis on the use of software to control safety critical plants for a wide area of applications. The importance of ensuring the correct operation of such potentially hazardous systems points to an emphasis on the verification of the system relative to a suitably secure specification. However, the process of verification is often made more complex by the concurrency and real-time considerations which are inherent in many applications. A response to this is the use of formal methods for the specification and verification of safety critical control systems. These provide a mathematical representation of a system which permits reasoning about its properties. This thesis investigates the use of the formal method Communicating Sequential Processes (CSP) for the verification of a safety critical control application. CSP is a discrete event based process algebra which has a compositional axiomatic semantics that supports verification by formal proof. The application is an industrial case study which concerns the concurrent control of a real-time high speed mechanism. It is seen from the case study that the axiomatic verification method employed is complex. It requires the user to have a relatively comprehensive understanding of the nature of the proof system and the application. By making a series of observations the thesis notes that CSP possesses the scope to support a more procedural approach to verification in the form of testing. This thesis investigates the technique of testing and proposes the method of Ideal Test Sets. By exploiting the underlying structure of the CSP semantic model it is shown that for certain processes and specifications the obligation of verification can be reduced to that of testing the specification over a finite subset of the behaviours of the process.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The thesis describes an investigation into methods for the specification, design and implementation of computer control systems for flexible manufacturing machines comprising multiple, independent, electromechanically-driven mechanisms. An analysis is made of the elements of conventional mechanically-coupled machines in order that the operational functions of these elements may be identified. This analysis is used to define the scope of requirements necessary to specify the format, function and operation of a flexible, independently driven mechanism machine. A discussion of how this type of machine can accommodate modern manufacturing needs of high-speed and flexibility is presented. A sequential method of capturing requirements for such machines is detailed based on a hierarchical partitioning of machine requirements from product to independent drive mechanism. A classification of mechanisms using notations, including Data flow diagrams and Petri-nets, is described which supports capture and allows validation of requirements. A generic design for a modular, IDM machine controller is derived based upon hierarchy of control identified in these machines. A two mechanism experimental machine is detailed which is used to demonstrate the application of the specification, design and implementation techniques. A computer controller prototype and a fully flexible implementation for the IDM machine, based on Petri-net models described using the concurrent programming language Occam, is detailed. The ability of this modular computer controller to support flexible, safe and fault-tolerant operation of the two intermittent motion, discrete-synchronisation independent drive mechanisms is presented. The application of the machine development methodology to industrial projects is established.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Control design for stochastic uncertain nonlinear systems is traditionally based on minimizing the expected value of a suitably chosen loss function. Moreover, most control methods usually assume the certainty equivalence principle to simplify the problem and make it computationally tractable. We offer an improved probabilistic framework which is not constrained by these previous assumptions, and provides a more natural framework for incorporating and dealing with uncertainty. The focus of this paper is on developing this framework to obtain an optimal control law strategy using a fully probabilistic approach for information extraction from process data, which does not require detailed knowledge of system dynamics. Moreover, the proposed control method framework allows handling the problem of input-dependent noise. A basic paradigm is proposed and the resulting algorithm is discussed. The proposed probabilistic control method is for the general nonlinear class of discrete-time systems. It is demonstrated theoretically on the affine class. A nonlinear simulation example is also provided to validate theoretical development.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In recent years the topic of risk management has moved up the agenda of both government and industry, and private sector initiatives to improve risk and internal control systems have been mirrored by similar promptings for change in the public sector. Both regulators and practitioners now view risk management as an integral part of the process of corporate governance, and an aid to the achievement of strategic objectives. The paper uses case study material on the risk management control system at Birmingham City Council to extend existing theory by developing a contingency theory for the public sector. The case demonstrates that whilst the structure of the control system fits a generic model, the operational details indicate that controls are contingent upon three core variables—central government policies, information and communication technology and organisational size. All three contingent variables are suitable for testing the theory across the broader public sector arena.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A view has emerged within manufacturing and service organizations that the operations management function can hold the key to achieving competitive edge. This has recently been emphasized by the demands for greater variety and higher quality which must be set against a background of increasing cost of resources. As nations' trade barriers are progressively lowered and removed, so producers of goods and service products are becoming more exposed to competition that may come from virtually anywhere around the world. To simply survive in this climate many organizations have found it necessary to improve their manufacturing or service delivery systems. To become real ''winners'' some have adopted a strategic approach to operations and completely reviewed and restructured their approach to production system design and operations planning and control. The articles in this issue of the International journal of Operations & Production Management have been selected to illustrate current thinking and practice in relation to this situation. They are all based on papers presented to the Sixth International Conference of the Operations Management Association-UK which was held at Aston University in June 1991. The theme of the conference was "Achieving Competitive Edge" and authors from 15 countries around the world contributed to more than 80 presented papers. Within this special issue five topic areas are addressed with two articles relating to each. The topics are: strategic management of operations; managing change; production system design; production control; and service operations. Under strategic management of operations De Toni, Filippini and Forza propose a conceptual model which considers the performance of an operating system as a source of competitive advantage through the ''operation value chain'' of design, purchasing, production and distribution. Their model is set within the context of the tendency towards globalization. New's article is somewhat in contrast to the more fashionable literature on operations strategy. It challenges the validity of the current idea of ''world-class manufacturing'' and, instead, urges a reconsideration of the view that strategic ''trade-offs'' are necessary to achieve a competitive edge. The importance of managing change has for some time been recognized within the field of organization studies but its relevance in operations management is now being realized. Berger considers the use of "organization design", ''sociotechnical systems'' and change strategies and contrasts these with the more recent idea of the ''dialogue perspective''. A tentative model is suggested to improve the analysis of different strategies in a situation specific context. Neely and Wilson look at an essential prerequisite if change is to be effected in an efficient way, namely product goal congruence. Using a case study as its basis, their article suggests a method of measuring goal congruence as a means of identifying the extent to which key performance criteria relating to quality, time, cost and flexibility are understood within an organization. The two articles on production systems design represent important contributions to the debate on flexible production organization and autonomous group working. Rosander uses the results from cases to test the applicability of ''flow groups'' as the optimal way of organizing batch production. Schuring also examines cases to determine the reasons behind the adoption of ''autonomous work groups'' in The Netherlands and Sweden. Both these contributions help to provide a greater understanding of the production philosophies which have emerged as alternatives to more conventional systems -------for intermittent and continuous production. The production control articles are both concerned with the concepts of ''push'' and ''pull'' which are the two broad approaches to material planning and control. Hirakawa, Hoshino and Katayama have developed a hybrid model, suitable for multistage manufacturing processes, which combines the benefits of both systems. They discuss the theoretical arguments in support of the system and illustrate its performance with numerical studies. Slack and Correa's concern is with the flexibility characteristics of push and pull material planning and control systems. They use the case of two plants using the different systems to compare their performance within a number of predefined flexibility types. The two final contributions on service operations are complementary. The article by Voss really relates to manufacturing but examines the application of service industry concepts within the UK manufacturing sector. His studies in a number of companies support the idea of the ''service factory'' and offer a new perspective for manufacturing. Harvey's contribution by contrast, is concerned with the application of operations management principles in the delivery of professional services. Using the case of social-service provision in Canada, it demonstrates how concepts such as ''just-in-time'' can be used to improve service performance. The ten articles in this special issue of the journal address a wide range of issues and situations. Their common aspect is that, together, they demonstrate the extent to which competitiveness can be improved via the application of operations management concepts and techniques.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The inverse controller is traditionally assumed to be a deterministic function. This paper presents a pedagogical methodology for estimating the stochastic model of the inverse controller. The proposed method is based on Bayes' theorem. Using Bayes' rule to obtain the stochastic model of the inverse controller allows the use of knowledge of uncertainty from both the inverse and the forward model in estimating the optimal control signal. The paper presents the methodology for general nonlinear systems and is demonstrated on nonlinear single-input-single-output (SISO) and multiple-input-multiple-output (MIMO) examples. © 2006 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In nonlinear and stochastic control problems, learning an efficient feed-forward controller is not amenable to conventional neurocontrol methods. For these approaches, estimating and then incorporating uncertainty in the controller and feed-forward models can produce more robust control results. Here, we introduce a novel inversion-based neurocontroller for solving control problems involving uncertain nonlinear systems which could also compensate for multi-valued systems. The approach uses recent developments in neural networks, especially in the context of modelling statistical distributions, which are applied to forward and inverse plant models. Provided that certain conditions are met, an estimate of the intrinsic uncertainty for the outputs of neural networks can be obtained using the statistical properties of networks. More generally, multicomponent distributions can be modelled by the mixture density network. Based on importance sampling from these distributions a novel robust inverse control approach is obtained. This importance sampling provides a structured and principled approach to constrain the complexity of the search space for the ideal control law. The developed methodology circumvents the dynamic programming problem by using the predicted neural network uncertainty to localise the possible control solutions to consider. A nonlinear multi-variable system with different delays between the input-output pairs is used to demonstrate the successful application of the developed control algorithm. The proposed method is suitable for redundant control systems and allows us to model strongly non-Gaussian distributions of control signal as well as processes with hysteresis. © 2004 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The inverse controller is traditionally assumed to be a deterministic function. This paper presents a pedagogical methodology for estimating the stochastic model of the inverse controller. The proposed method is based on Bayes' theorem. Using Bayes' rule to obtain the stochastic model of the inverse controller allows the use of knowledge of uncertainty from both the inverse and the forward model in estimating the optimal control signal. The paper presents the methodology for general nonlinear systems. For illustration purposes, the proposed methodology is applied to linear Gaussian systems. © 2004 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper considers the global synchronisation of a stochastic version of coupled map lattices networks through an innovative stochastic adaptive linear quadratic pinning control methodology. In a stochastic network, each state receives only noisy measurement of its neighbours' states. For such networks we derive a generalised Riccati solution that quantifies and incorporates uncertainty of the forward dynamics and inverse controller in the derivation of the stochastic optimal control law. The generalised Riccati solution is derived using the Lyapunov approach. A probabilistic approximation type algorithm is employed to estimate the conditional distributions of the state and inverse controller from historical data and quantifying model uncertainties. The theoretical derivation is complemented by its validation on a set of representative examples.