66 resultados para Nonlinear system


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate electronic mitigation of linear and non-linear fibre impairments and compare various digital signal processing techniques, including electronic dispersion compensation (EDC), single-channel back-propagation (SC-BP) and back-propagation with multiple channel processing (MC-BP) in a nine-channel 112 Gb/s PM-mQAM (m=4,16) WDM system, for reaches up to 6,320 km. We show that, for a sufficiently high local dispersion, SC-BP is sufficient to provide a significant performance enhancement when compared to EDC, and is adequate to achieve BER below FEC threshold. For these conditions we report that a sampling rate of two samples per symbol is sufficient for practical SC-BP, without significant penalties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Summary form only given. Both dispersion management and the use of a nonlinear optical loop mirror (NOLM) as a saturable absorber can improve the performance of a soliton-based communication system. Dispersion management gives the benefits of low average dispersion while allowing pulses with higher powers to propagate, which helps to suppress Gordon-Haus timing jitter without sacrificing the signal-to-noise ratio. The NOLM suppresses the buildup of amplifier spontaneous emission noise and background dispersive radiation which, if allowed to interact with the soliton, can lead to its breakup. We examine optical pulse propagation in dispersion-managed (DM) transmission system with periodically inserted in-line NOLMs. To describe basic features of the signal transmission in such lines, we develop a simple theory based on a variational approach involving Gaussian trial functions. It, has already been proved that the variational method is an extremely effective tool for description of DM solitons. In the work we manage to include in the variational description the point action of the NOLM on pulse parameters, assuming that the Gaussian pulse shape is inherently preserved by propagation through the NOLM. The obtained results are verified by direct numerical simulations

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have reduced signal-signal four-wave mixing crosstalk in a fiber optical parametric amplifier (OPA) by using a short nonlinear fiber for the gain medium and a high-power pump. This allowed us to obtain less than 1 dB penalty for amplification of 26 dense wavelength-division multiplexed (WDM) channels modulated at 43.7Gb/s return to zero-differential phase-shift keying, with the OPA placed between transmitter and receiver. We then used the same OPA in several different roles for a long-haul transmission system. We did not insert the OPA within the loop, but investigated this role indirectly by using equivalent results for small numbers of loop recirculations. We found that standard erbium-doped fiber amplifiers currently hold an advantage over this OPA, which becomes negligible for long distances. This paper shows that at this time OPAs can handle amplification of WDM traffic in excess of 1 Tb/s with little degradation. It also indicates that with further improvements, fiber OPAs could be a contender for wideband amplification in future optical communication networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop an analytical theory which allows us to identify the information spectral density limits of multimode optical fiber transmission systems. Our approach takes into account the Kerr-effect induced interactions of the propagating spatial modes and derives closed-form expressions for the spectral density of the corresponding nonlinear distortion. Experimental characterization results have confirmed the accuracy of the proposed models. Application of our theory in different FMF transmission scenarios has predicted a ~10% variation in total system throughput due to changes associated with inter-mode nonlinear interactions, in agreement with an observed 3dB increase in nonlinear noise power spectral density for a graded index four LP mode fiber. © 2013 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-speed optical clock recovery, demultiplexing and data regeneration will be integral parts of any future photonic network based on high bit-rate OTDM. Much research has been conducted on devices that perform these functions, however to date each process has been demonstrated independently. A very promising method of all-optical switching is that of a semiconductor optical amplifier-based nonlinear optical loop mirror (SOA-NOLM). This has various advantages compared with the standard fiber NOLM, most notably low switching power, compact size and stability. We use the SOA-NOLM as an all-optical mixer in a classical phase-locked loop arrangement to achieve optical clock recovery, while at the same time achieving data regeneration in a single compact device

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Summary form only given. Both dispersion management and the use of a nonlinear optical loop mirror (NOLM) as a saturable absorber can improve the performance of a soliton-based communication system. Dispersion management gives the benefits of low average dispersion while allowing pulses with higher powers to propagate, which helps to suppress Gordon-Haus timing jitter without sacrificing the signal-to-noise ratio. The NOLM suppresses the buildup of amplifier spontaneous emission noise and background dispersive radiation which, if allowed to interact with the soliton, can lead to its breakup. We examine optical pulse propagation in dispersion-managed (DM) transmission system with periodically inserted in-line NOLMs. To describe basic features of the signal transmission in such lines, we develop a simple theory based on a variational approach involving Gaussian trial functions. It, has already been proved that the variational method is an extremely effective tool for description of DM solitons. In the work we manage to include in the variational description the point action of the NOLM on pulse parameters, assuming that the Gaussian pulse shape is inherently preserved by propagation through the NOLM. The obtained results are verified by direct numerical simulations

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We experimentally investigate a long-distance, high-bit-rate transmission system which combines optical-phase-conjugation with quasi-lossless amplification. Comparison with a conventional system configuration demonstrates the possibility of obtaining both dispersion compensation and improved nonlinear tolerance using proposed scheme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using a fiber laser system as a specific illustrative example, we introduce the concept of intermediate asymptotic states in finite nonlinear optical systems. We show that intermediate asymptotics of nonlinear equations (e.g., coherent structures with a finite lifetime or distance) can be used in applications similar to those of truly stable asymptotic solutions, such as, e.g., solitons and dissipative nonlinear waves. Applying this general idea to a particular, albeit practically important, physical system, we demonstrate a novel type of nonlinear pulse-shaping regime in a mode-locked fiber laser leading to the generation of linearly chirped pulses with a triangular distribution of the intensity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate that a combination of Raman laser based amplification and optical phase conjugation enables transmission beyond the nonlinear-Shannon limit. We show nonlinear compensation of 7x114Gbit/s DP-QPSK channels, increasing system reach by 30%. © 2013 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A reconfigurable nonlinear equalizer (RNLE) based on inverse Volterra series transfer function is proposed for dual-polarization (DP) and multiband coherent optical orthogonal frequency-division multiplexing (OFDM) signals. It is shown that the RNLE outperforms by 2 dB the linear equalization in a 260-Gb/s DP-OFDM system at 1500 km. The RNLE improves the tolerance to inter/intraband nonlinearities, being independent on polarization tributaries, modulation format, signal bit rate, subcarrier number, and distance. © 1989-2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a scheme for multilevel (nine or more) amplitude regeneration based on a nonlinear optical loop mirror (NOLM) and demonstrate through numerical modeling its efficiency and cascadability on circular 16-, 64-, and 256- symbol constellations. We show that the amplitude noise is efficiently suppressed. The design is flexible and enables variation of the number of levels and their positioning. The scheme is compatible with phase regenerators. Also, compared to the traditional single-NOLM configuration scheme, new features, such as reduced and sign-varied power-dependent phase shift, are available. The model is simple to implement, as it requires only two couplers in addition to the traditional NOLM, and offers a vast range of optimization parameters. © 2014 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We review the nonlinear channel capacity of optical fiber communication systems using both linear and nonlinear amplifiers. We show that the capacity of a nonlinear transmission system employing linear optical amplifiers can be enhanced by over 300% by using all optical regeneration. © OSA 2013.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper will review the current understanding of the so called nonlinear Shannon limit, and will speculate on methods to approach the limit through new system configurations, and increase the limit using new optical fibres. © 2012 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental observation of autosoliton propagation in a nonlinear switch-guided, dispersion-managed system operating at 80Gbit/s is reported for the first time. The system is based on a strong dispersion map and supports autosoliton propagation over 3,000km.