56 resultados para Nonlinear Dunkl-Schrödinger Equation
Resumo:
We present a perturbation analysis that describes the effect of third-order dispersion on the similariton pulse solution of the nonlinear Schrödinger equation in a fibre gain medium. The theoretical model predicts with sufficient accuracy the pulse structural changes induced, which are observed through direct numerical simulations.
Resumo:
One of the extraordinary aspects of nonlinear wave evolution which has been observed as the spontaneous occurrence of astonishing and statistically extraordinary amplitude wave is called rogue wave. We show that the eigenvalues of the associated equation of nonlinear Schrödinger equation are almost constant in the vicinity of rogue wave and we validate that optical rogue waves are formed by the collision between quasi-solitons in anomalous dispersion fiber exhibiting weak third order dispersion.
Resumo:
The impact of third-order dispersion (TOD) on optical rogue wave phenomenon is investigated numerically. We validate the TOD coefficient by utilizing the eigenvalue of the associated equation of the nonlinear Schrödinger equation (NLSE). © 2014 OSA.
Resumo:
Femtosecond laser microfabrication has emerged over the last decade as a 3D flexible technology in photonics. Numerical simulations provide an important insight into spatial and temporal beam and pulse shaping during the course of extremely intricate nonlinear propagation (see e.g. [1,2]). Electromagnetics of such propagation is typically described in the form of the generalized Non-Linear Schrdinger Equation (NLSE) coupled with Drude model for plasma [3]. In this paper we consider a multi-threaded parallel numerical solution for a specific model which describes femtosecond laser pulse propagation in transparent media [4, 5]. However our approach can be extended to similar models. The numerical code is implemented in NVIDIA Graphics Processing Unit (GPU) which provides an effitient hardware platform for multi-threded computing. We compare the performance of the described below parallel code implementated for GPU using CUDA programming interface [3] with a serial CPU version used in our previous papers [4,5]. © 2011 IEEE.
Resumo:
For the first time, we demonstrate the possibility to switch between three distinct pulse regimes in a dissipative dispersion-managed (DM) fibre laser by solely controlling the gain saturation energy. Nonlinear Schrödinger equation based simulations show the transitions between hyper-Gaussian similaritons, parabolic similaritons, and dissipative solitons in the same laser cavity. It is also shown that such transitions exist in a wide dispersion range from all-normal to slightly net-normal dispersion. This work demonstrates that besides dispersion and filter managements gain saturation energy can be a new degree of freedom to manage pulse regimes in DM fibre lasers, which offers flexibility in designing ultrafast fibre lasers. Also, the result indicates that in contrast to conservative soliton lasers whose intensity profiles are unique, dissipative DM lasers show diversity in pulse shapes. The findings not only give a better understanding of pulse shaping mechanisms in mode-locked lasers, but also provide insight into dissipative systems.
Resumo:
We present a review of the latest developments in one-dimensional (1D) optical wave turbulence (OWT). Based on an original experimental setup that allows for the implementation of 1D OWT, we are able to show that an inverse cascade occurs through the spontaneous evolution of the nonlinear field up to the point when modulational instability leads to soliton formation. After solitons are formed, further interaction of the solitons among themselves and with incoherent waves leads to a final condensate state dominated by a single strong soliton. Motivated by the observations, we develop a theoretical description, showing that the inverse cascade develops through six-wave interaction, and that this is the basic mechanism of nonlinear wave coupling for 1D OWT. We describe theory, numerics and experimental observations while trying to incorporate all the different aspects into a consistent context. The experimental system is described by two coupled nonlinear equations, which we explore within two wave limits allowing for the expression of the evolution of the complex amplitude in a single dynamical equation. The long-wave limit corresponds to waves with wave numbers smaller than the electrical coherence length of the liquid crystal, and the opposite limit, when wave numbers are larger. We show that both of these systems are of a dual cascade type, analogous to two-dimensional (2D) turbulence, which can be described by wave turbulence (WT) theory, and conclude that the cascades are induced by a six-wave resonant interaction process. WT theory predicts several stationary solutions (non-equilibrium and thermodynamic) to both the long- and short-wave systems, and we investigate the necessary conditions required for their realization. Interestingly, the long-wave system is close to the integrable 1D nonlinear Schrödinger equation (NLSE) (which contains exact nonlinear soliton solutions), and as a result during the inverse cascade, nonlinearity of the system at low wave numbers becomes strong. Subsequently, due to the focusing nature of the nonlinearity, this leads to modulational instability (MI) of the condensate and the formation of solitons. Finally, with the aid of the probability density function (PDF) description of WT theory, we explain the coexistence and mutual interactions between solitons and the weakly nonlinear random wave background in the form of a wave turbulence life cycle (WTLC).
Resumo:
We study theoretically and numerically the dynamics of a passive optical fiber ring cavity pumped by a highly incoherent wave: an incoherently injected fiber laser. The theoretical analysis reveals that the turbulent dynamics of the cavity is dominated by the Raman effect. The forced-dissipative nature of the fiber cavity is responsible for a large diversity of turbulent behaviors: Aside from nonequilibrium statistical stationary states, we report the formation of a periodic pattern of spectral incoherent solitons, or the formation of different types of spectral singularities, e.g., dispersive shock waves and incoherent spectral collapse behaviors. We derive a mean-field kinetic equation that describes in detail the different turbulent regimes of the cavity and whose structure is formally analogous to the weak Langmuir turbulence kinetic equation in the presence of forcing and damping. A quantitative agreement is obtained between the simulations of the nonlinear Schrödinger equation with cavity boundary conditions and those of the mean-field kinetic equation and the corresponding singular integrodifferential reduction, without using adjustable parameters. We discuss the possible realization of a fiber cavity experimental setup in which the theoretical predictions can be observed and studied.
Resumo:
When two solutions differing in solute concentration are separated by a porous membrane, the osmotic pressure will generate a net volume flux of the suspending fluid across the membrane; this is termed osmotic flow. We consider the osmotic flow across a membrane with circular cylindrical pores when the solute and the pore walls are electrically charged, and the suspending fluid is an electrolytic solution containing small cations and anions. Under the condition in which the radius of the pores and that of the solute molecules greatly exceed those of the solvent as well as the ions, a fluid mechanical and electrostatic theory is introduced to describe the osmotic flow in the presence of electric charge. The interaction energy, including the electrostatic interaction between the solute and the pore wall, plays a key role in determining the osmotic flow. We examine the electrostatic effect on the osmotic flow and discuss the difference in the interaction energy determined from the nonlinear Poisson-Boltzmann equation and from its linearized equation (the Debye-Hückel equation).
Resumo:
Traditional wave kinetics describes the slow evolution of systems with many degrees of freedom to equilibrium via numerous weak non-linear interactions and fails for very important class of dissipative (active) optical systems with cyclic gain and losses, such as lasers with non-linear intracavity dynamics. Here we introduce a conceptually new class of cyclic wave systems, characterized by non-uniform double-scale dynamics with strong periodic changes of the energy spectrum and slow evolution from cycle to cycle to a statistically steady state. Taking a practically important example—random fibre laser—we show that a model describing such a system is close to integrable non-linear Schrödinger equation and needs a new formalism of wave kinetics, developed here. We derive a non-linear kinetic theory of the laser spectrum, generalizing the seminal linear model of Schawlow and Townes. Experimental results agree with our theory. The work has implications for describing kinetics of cyclical systems beyond photonics.
Resumo:
A new type of dissipative solitons - dissipative Raman solitons - are revealed on the basis of numerical study of the generalized complex nonlinear Ginzburg-Landau equation. The stimulated Raman scattering significantly affects the energy scalability of the dissipative solitons, causing splitting to multiple pulses. We show, that an appropriate increase of the group-delay dispersion can suppress the multipulsing instability due to formation of the dissipative Raman soliton, which is chirped, has a Stokes-shifted spectrum, and chaotic modulation on its trailing edge. The strong perturbation of a soliton envelope caused by the stimulated Raman scattering confines the energy scalability, preventing the so-called dissipative soliton resonance. We show that in practical implementations, a spectral filter can extend the stability regions of high-energy pulses.
Resumo:
We argue that the physics of interacting Kelvin Waves (KWs) is highly nontrivial and cannot be understood on the basis of pure dimensional reasoning. A consistent theory of KW turbulence in superfluids should be based upon explicit knowledge of their interactions. To achieve this, we present a detailed calculation and comprehensive analysis of the interaction coefficients for KW turbuelence, thereby, resolving previous mistakes stemming from unaccounted contributions. As a first application of this analysis, we derive a local nonlinear (partial differential) equation. This equation is much simpler for analysis and numerical simulations of KWs than the Biot-Savart equation, and in contrast to the completely integrable local induction approximation (in which the energy exchange between KWs is absent), describes the nonlinear dynamics of KWs. Second, we show that the previously suggested Kozik-Svistunov energy spectrum for KWs, which has often been used in the analysis of experimental and numerical data in superfluid turbulence, is irrelevant, because it is based upon an erroneous assumption of the locality of the energy transfer through scales. Moreover, we demonstrate the weak nonlocality of the inverse cascade spectrum with a constant particle-number flux and find resulting logarithmic corrections to this spectrum.
Resumo:
The problem considered is that of determining the shape of a planar acoustically sound-soft obstacle from knowledge of the far-field pattern for one time-harmonic incident field. Two methods, which are based on the solution of a pair of integral equations representing the incoming wave and the far-field pattern, respectively, are proposed and investigated for finding the unknown boundary. Numerical resultsare included which show that the methods give accurate numerical approximations in relatively few iterations.
Resumo:
Cilia and flagella are hairlike extensions of eukaryotic cells which generate oscillatory beat patterns that can propel micro-organisms and create fluid flows near cellular surfaces. The evolutionary highly conserved core of cilia and flagella consists of a cylindrical arrangement of nine microtubule doublets, called the axoneme. The axoneme is an actively bending structure whose motility results from the action of dynein motor proteins cross-linking microtubule doublets and generating stresses that induce bending deformations. The periodic beat patterns are the result of a mechanical feedback that leads to self-organized bending waves along the axoneme. Using a theoretical framework to describe planar beating motion, we derive a nonlinear wave equation that describes the fundamental Fourier mode of the axonemal beat. We study the role of nonlinearities and investigate how the amplitude of oscillations increases in the vicinity of an oscillatory instability. We furthermore present numerical solutions of the nonlinear wave equation for different boundary conditions. We find that the nonlinear waves are well approximated by the linearly unstable modes for amplitudes of beat patterns similar to those observed experimentally.
Resumo:
The phenomenon of low-PMD fibres is examined through numerical simulations. Instead of the coarse-step method we are using an algorithm developed through the Manakov-PMD equation. With the integration of the Manakov-PMD equation we have access to the fibre spin which relates to the orientation of the birefringence. The simulation results produced correspond to the behaviour of a low-PMD spun fibre. Furthermore we provide an analytical approximation compared to the numerical data. © 2005 Optical Society of America.
Resumo:
The Manakov-PMD equation can be integrated with the same numerical efficiency as the coarse-step method by using precomputed M(Ω) matrices, which entirely avoids the somewhat ad-hoc rescaling of coefficients necessary in the coarse-step method.