55 resultados para Neonates, EEG Analysis, Seizures, Signal Processing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents an investigation, of synchronisation and causality, motivated by problems in computational neuroscience. The thesis addresses both theoretical and practical signal processing issues regarding the estimation of interdependence from a set of multivariate data generated by a complex underlying dynamical system. This topic is driven by a series of problems in neuroscience, which represents the principal background motive behind the material in this work. The underlying system is the human brain and the generative process of the data is based on modern electromagnetic neuroimaging methods . In this thesis, the underlying functional of the brain mechanisms are derived from the recent mathematical formalism of dynamical systems in complex networks. This is justified principally on the grounds of the complex hierarchical and multiscale nature of the brain and it offers new methods of analysis to model its emergent phenomena. A fundamental approach to study the neural activity is to investigate the connectivity pattern developed by the brain’s complex network. Three types of connectivity are important to study: 1) anatomical connectivity refering to the physical links forming the topology of the brain network; 2) effective connectivity concerning with the way the neural elements communicate with each other using the brain’s anatomical structure, through phenomena of synchronisation and information transfer; 3) functional connectivity, presenting an epistemic concept which alludes to the interdependence between data measured from the brain network. The main contribution of this thesis is to present, apply and discuss novel algorithms of functional connectivities, which are designed to extract different specific aspects of interaction between the underlying generators of the data. Firstly, a univariate statistic is developed to allow for indirect assessment of synchronisation in the local network from a single time series. This approach is useful in inferring the coupling as in a local cortical area as observed by a single measurement electrode. Secondly, different existing methods of phase synchronisation are considered from the perspective of experimental data analysis and inference of coupling from observed data. These methods are designed to address the estimation of medium to long range connectivity and their differences are particularly relevant in the context of volume conduction, that is known to produce spurious detections of connectivity. Finally, an asymmetric temporal metric is introduced in order to detect the direction of the coupling between different regions of the brain. The method developed in this thesis is based on a machine learning extensions of the well known concept of Granger causality. The thesis discussion is developed alongside examples of synthetic and experimental real data. The synthetic data are simulations of complex dynamical systems with the intention to mimic the behaviour of simple cortical neural assemblies. They are helpful to test the techniques developed in this thesis. The real datasets are provided to illustrate the problem of brain connectivity in the case of important neurological disorders such as Epilepsy and Parkinson’s disease. The methods of functional connectivity in this thesis are applied to intracranial EEG recordings in order to extract features, which characterize underlying spatiotemporal dynamics before during and after an epileptic seizure and predict seizure location and onset prior to conventional electrographic signs. The methodology is also applied to a MEG dataset containing healthy, Parkinson’s and dementia subjects with the scope of distinguishing patterns of pathological from physiological connectivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents the results from an investigation into the merits of analysing Magnetoencephalographic (MEG) data in the context of dynamical systems theory. MEG is the study of both the methods for the measurement of minute magnetic flux variations at the scalp, resulting from neuro-electric activity in the neocortex, as well as the techniques required to process and extract useful information from these measurements. As a result of its unique mode of action - by directly measuring neuronal activity via the resulting magnetic field fluctuations - MEG possesses a number of useful qualities which could potentially make it a powerful addition to any brain researcher's arsenal. Unfortunately, MEG research has so far failed to fulfil its early promise, being hindered in its progress by a variety of factors. Conventionally, the analysis of MEG has been dominated by the search for activity in certain spectral bands - the so-called alpha, delta, beta, etc that are commonly referred to in both academic and lay publications. Other efforts have centred upon generating optimal fits of "equivalent current dipoles" that best explain the observed field distribution. Many of these approaches carry the implicit assumption that the dynamics which result in the observed time series are linear. This is despite a variety of reasons which suggest that nonlinearity might be present in MEG recordings. By using methods that allow for nonlinear dynamics, the research described in this thesis avoids these restrictive linearity assumptions. A crucial concept underpinning this project is the belief that MEG recordings are mere observations of the evolution of the true underlying state, which is unobservable and is assumed to reflect some abstract brain cognitive state. Further, we maintain that it is unreasonable to expect these processes to be adequately described in the traditional way: as a linear sum of a large number of frequency generators. One of the main objectives of this thesis will be to prove that much more effective and powerful analysis of MEG can be achieved if one were to assume the presence of both linear and nonlinear characteristics from the outset. Our position is that the combined action of a relatively small number of these generators, coupled with external and dynamic noise sources, is more than sufficient to account for the complexity observed in the MEG recordings. Another problem that has plagued MEG researchers is the extremely low signal to noise ratios that are obtained. As the magnetic flux variations resulting from actual cortical processes can be extremely minute, the measuring devices used in MEG are, necessarily, extremely sensitive. The unfortunate side-effect of this is that even commonplace phenomena such as the earth's geomagnetic field can easily swamp signals of interest. This problem is commonly addressed by averaging over a large number of recordings. However, this has a number of notable drawbacks. In particular, it is difficult to synchronise high frequency activity which might be of interest, and often these signals will be cancelled out by the averaging process. Other problems that have been encountered are high costs and low portability of state-of-the- art multichannel machines. The result of this is that the use of MEG has, hitherto, been restricted to large institutions which are able to afford the high costs associated with the procurement and maintenance of these machines. In this project, we seek to address these issues by working almost exclusively with single channel, unaveraged MEG data. We demonstrate the applicability of a variety of methods originating from the fields of signal processing, dynamical systems, information theory and neural networks, to the analysis of MEG data. It is noteworthy that while modern signal processing tools such as independent component analysis, topographic maps and latent variable modelling have enjoyed extensive success in a variety of research areas from financial time series modelling to the analysis of sun spot activity, their use in MEG analysis has thus far been extremely limited. It is hoped that this work will help to remedy this oversight.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The standard reference clinical score quantifying average Parkinson's disease (PD) symptom severity is the Unified Parkinson's Disease Rating Scale (UPDRS). At present, UPDRS is determined by the subjective clinical evaluation of the patient's ability to adequately cope with a range of tasks. In this study, we extend recent findings that UPDRS can be objectively assessed to clinically useful accuracy using simple, self-administered speech tests, without requiring the patient's physical presence in the clinic. We apply a wide range of known speech signal processing algorithms to a large database (approx. 6000 recordings from 42 PD patients, recruited to a six-month, multi-centre trial) and propose a number of novel, nonlinear signal processing algorithms which reveal pathological characteristics in PD more accurately than existing approaches. Robust feature selection algorithms select the optimal subset of these algorithms, which is fed into non-parametric regression and classification algorithms, mapping the signal processing algorithm outputs to UPDRS. We demonstrate rapid, accurate replication of the UPDRS assessment with clinically useful accuracy (about 2 UPDRS points difference from the clinicians' estimates, p < 0.001). This study supports the viability of frequent, remote, cost-effective, objective, accurate UPDRS telemonitoring based on self-administered speech tests. This technology could facilitate large-scale clinical trials into novel PD treatments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Seizures are one of the most common symptoms of acute neurological disorders in newborns. This study aims at evaluating predictors of epilepsy in newborns with neonatal seizures. METHODS: we recruited consecutively eighty-five neonates with repeated neonatal video-EEG-confirmed seizures between Jan 1999 and Dec 2004. The relationship between clinical, EEG and ultrasound data in neonatal period and the development of post-neonatal epilepsy was investigated at 7 years of age. RESULTS: Fifteen patients (17.6%) developed post-neonatal epilepsy. Partial or no response to anticonvulsant therapy (OR 16.7, 95% CI: 1.8-155.8, p= .01; OR 47, 95% CI: 5.2-418.1, p<.01 respectively), severely abnormal cerebral ultrasound scan findings (OR: 5.4; 95% CI: 1.1-27.4; p<.04), severely abnormal EEG background activity (OR: 9.5; 95% CI: 1.6-54.2; p= .01) and the presence of status epilepticus (OR: 6.1; 95% CI: 1.8-20.3; p<.01) were found to be predictors of epilepsy. However, only the response to therapy seemed to be an independent predictor of post-neonatal epilepsy. CONCLUSION: Neonatal seizures seem to be related to post-neonatal epilepsy. Recurrent and prolonged neonatal seizures may act on an epileptogenic substrate, causing further damage, which is responsible for the subsequent clinical expression of epilepsy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the study is to characterize the local muscles motion in individuals undergoing whole body mechanical stimulation. In this study we aim also to evaluate how subject positioning modifies vibration dumping, altering local mechanical stimulus. Vibrations were delivered to subjects by the use of a vibrating platform, while stimulation frequency was increased linearly from 15 to 60Hz. Two different subject postures were here analysed. Platform and muscles motion were monitored using tiny MEMS accelerometers; a contra lateral analysis was also presented. Muscle motion analysis revealed typical displacement trajectories: motion components were found not to be purely sinusoidal neither in phase to each other. Results also revealed a mechanical resonant-like behaviour at some muscles, similar to a second-order system response. Resonance frequencies and dumping factors depended on subject and his positioning. Proper mechanical stimulation can maximize muscle spindle solicitation, which may produce a more effective muscle activation. © 2010 M. Cesarelli et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One major drawback of coherent optical orthogonal frequency-division multiplexing (CO-OFDM) that hitherto remains unsolved is its vulnerability to nonlinear fiber effects due to its high peak-to-average power ratio. Several digital signal processing techniques have been investigated for the compensation of fiber nonlinearities, e.g., digital back-propagation, nonlinear pre- and post-compensation and nonlinear equalizers (NLEs) based on the inverse Volterra-series transfer function (IVSTF). Alternatively, nonlinearities can be mitigated using nonlinear decision classifiers such as artificial neural networks (ANNs) based on a multilayer perceptron. In this paper, ANN-NLE is presented for a 16QAM CO-OFDM system. The capability of the proposed approach to compensate the fiber nonlinearities is numerically demonstrated for up to 100-Gb/s and over 1000km and compared to the benchmark IVSTF-NLE. Results show that in terms of Q-factor, for 100-Gb/s at 1000km of transmission, ANN-NLE outperforms linear equalization and IVSTF-NLE by 3.2dB and 1dB, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photonic technologies for data processing in the optical domain are expected to play a major role in future high-speed communications. Nonlinear effects in optical fibres have many attractive features and great, but not yet fully explored potential for optical signal processing. Here we provide an overview of our recent advances in developing novel techniques and approaches to all-optical processing based on fibre nonlinearities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have recently proposed the framework of independent blind source separation as an advantageous approach to steganography. Amongst the several characteristics noted was a sensitivity to message reconstruction due to small perturbations in the sources. This characteristic is not common in most other approaches to steganography. In this paper we discuss how this sensitivity relates the joint diagonalisation inside the independent component approach, and reliance on exact knowledge of secret information, and how it can be used as an additional and inherent security mechanism against malicious attack to discovery of the hidden messages. The paper therefore provides an enhanced mechanism that can be used for e-document forensic analysis and can be applied to different dimensionality digital data media. In this paper we use a low dimensional example of biomedical time series as might occur in the electronic patient health record, where protection of the private patient information is paramount.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study some common types of Rolling Bearing vibrations are analysed in depth both theoretically and experimentally. The study is restricted to vibrations in the radial direction of bearings having pure radial load and a positive radial clearance. The general vibrational behaviour of such bearings has been investigated with respect to the effects of varying compliance, manufacturing tolerances and the interaction between the bearing and the machine structure into which it is fitted. The equations of motion for a rotor supported by a bearing in which the stiffness varies with cage position has been set up and examples of solutions,obtained by digital simulation. is given. A method to calculate amplitudes and frequencies of vibration components due to out of roundness of the inner ring and varying roller diameters has been developed. The results from these investigations have been combined with a theory for bearing/machine frame interaction using mechanical impedance technique, thereby facilitating prediction of the vibrational behaviour of the whole set up. Finally. the effects of bearing fatigue and wear have been studied with particular emphasis on the use of vibration analysis for condition monitoring purposes. A number of monitoring methods have been tried and their effectiveness discussed. The experimental investigation was carried out using two purpose built rigs. For the purpose of analysis of the experimental measurements a digital mini computer was adapted for signal processing and a suite of programs was written. The program package performs several of the commonly used signal analysis processes and :include all necessary input and output functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis first considers the calibration and signal processing requirements of a neuromagnetometer for the measurement of human visual function. Gradiometer calibration using straight wire grids is examined and optimal grid configurations determined, given realistic constructional tolerances. Simulations show that for gradiometer balance of 1:104 and wire spacing error of 0.25mm the achievable calibration accuracy of gain is 0.3%, of position is 0.3mm and of orientation is 0.6°. Practical results with a 19-channel 2nd-order gradiometer based system exceed this performance. The real-time application of adaptive reference noise cancellation filtering to running-average evoked response data is examined. In the steady state, the filter can be assumed to be driven by a non-stationary step input arising at epoch boundaries. Based on empirical measures of this driving step an optimal progression for the filter time constant is proposed which improves upon fixed time constant filter performance. The incorporation of the time-derivatives of the reference channels was found to improve the performance of the adaptive filtering algorithm by 15-20% for unaveraged data, falling to 5% with averaging. The thesis concludes with a neuromagnetic investigation of evoked cortical responses to chromatic and luminance grating stimuli. The global magnetic field power of evoked responses to the onset of sinusoidal gratings was shown to have distinct chromatic and luminance sensitive components. Analysis of the results, using a single equivalent current dipole model, shows that these components arise from activity within two distinct cortical locations. Co-registration of the resulting current source localisations with MRI shows a chromatically responsive area lying along the midline within the calcarine fissure, possibly extending onto the lingual and cuneal gyri. It is postulated that this area is the human homologue of the primate cortical area V4.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-uniform B-spline dictionaries on a compact interval are discussed in the context of sparse signal representation. For each given partition, dictionaries of B-spline functions for the corresponding spline space are built up by dividing the partition into subpartitions and joining together the bases for the concomitant subspaces. The resulting slightly redundant dictionaries are composed of B-spline functions of broader support than those corresponding to the B-spline basis for the identical space. Such dictionaries are meant to assist in the construction of adaptive sparse signal representation through a combination of stepwise optimal greedy techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of new all-optical technologies for data processing and signal manipulation is a field of growing importance with a strong potential for numerous applications in diverse areas of modern science. Nonlinear phenomena occurring in optical fibres have many attractive features and great, but not yet fully explored, potential in signal processing. Here, we review recent progress on the use of fibre nonlinearities for the generation and shaping of optical pulses and on the applications of advanced pulse shapes in all-optical signal processing. Amongst other topics, we will discuss ultrahigh repetition rate pulse sources, the generation of parabolic shaped pulses in active and passive fibres, the generation of pulses with triangular temporal profiles, and coherent supercontinuum sources. The signal processing applications will span optical regeneration, linear distortion compensation, optical decision at the receiver in optical communication systems, spectral and temporal signal doubling, and frequency conversion. © Copyright 2012 Sonia Boscolo and Christophe Finot.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simultaneous conversion of the two orthogonal phase components of an optical input to different output frequencies has been demonstrated by simulation and experiment. A single stage of four-wave mixing between the input signal and four pumps derived from a frequency comb was employed. The nonlinear device was a semiconductor optical amplifier, which provided overall signal gain and sufficient contrast for phase sensitive signal processing. The decomposition of a quadrature phase-shift keyed signal into a pair of binary phase-shift keyed outputs at different frequencies was also demonstrated by simulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We experimentally demonstrate the use of full-field electronic dispersion compensation (EDC) to achieve a bit error rate of 5 x 10(-5) at 22.3 dB optical signal-to-noise ratio for single-channel 10 Gbit/s on-off keyed signal after transmission over 496 km field-installed single-mode fibre with an amplifier spacing of 124 km. This performance is achieved by designing the EDC so as to avoid electronic amplification of the noise content of the signal during full-field reconstruction. We also investigate the tolerance of the system to key signal processing parameters, and numerically demonstrate that single-channel 2160 km single mode fibre transmission without in-line optical dispersion compensation can be achieved using this technique with 80 km amplifier spacing and optimized system parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this research was to investigate the effects of Processing Instruction (VanPatten, 1996, 2007), as an input-based model for teaching second language grammar, on Syrian learners’ processing abilities. The present research investigated the effects of Processing Instruction on the acquisition of English relative clauses by Syrian learners in the form of a quasi-experimental design. Three separate groups were involved in the research (Processing Instruction, Traditional Instruction and a Control Group). For assessment, a pre-test, a direct post-test and a delayed post-test were used as main tools for eliciting data. A questionnaire was also distributed to participants in the Processing Instruction group to give them the opportunity to give feedback in relation to the treatment they received in comparison with the Traditional Instruction they are used to. Four hypotheses were formulated on the possible effectivity of Processing Instruction on Syrian learners’ linguistic system. It was hypothesised that Processing Instruction would improve learners’ processing abilities leading to an improvement in learners’ linguistic system. This was expected to lead to a better performance when it comes to the comprehension and production of English relative clauses. The main source of data was analysed statistically using the ANOVA test. Cohen’s d calculations were also used to support the ANOVA test. Cohen’s d showed the magnitude of effects of the three treatments. Results of the analysis showed that both Processing Instruction and Traditional Instruction groups had improved after treatment. However, the Processing Instruction Group significantly outperformed the other two groups in the comprehension of relative clauses. The analysis concluded that Processing Instruction is a useful tool for instructing relative clauses to Syrian learners. This was enhanced by participants’ responses to the questionnaire as they were in favour of Processing Instruction, rather than Traditional Instruction. This research has theoretical and pedagogical implications. Theoretically, the study showed support for the Input hypothesis. That is, it was shown that Processing Instruction had a positive effect on input processing as it affected learners’ linguistic system. This was reflected in learners’ performance where learners were able to produce a structure which they had not been asked to produce. Pedagogically, the present research showed that Processing Instruction is a useful tool for teaching English grammar in the context where the experiment was carried out, as it had a large effect on learners’ performance.