33 resultados para Myenteric neuron
Resumo:
In this review, we summarize three sets of findings that have recently been observed in thalamic astrocytes and neurons, and discuss their significance for thalamocortical loop dynamics. (i) A physiologically relevant ‘window’ component of the low–voltage–activated, T–type Ca2+ current (ITwindow) plays an essential part in the slow (less than 1 Hz) sleep oscillation in adult thalamocortical (TC) neurons, indicating that the expression of this fundamental sleep rhythm in these neurons is not a simple reflection of cortical network activity. It is also likely that ITwindow underlies one of the cellular mechanisms enabling TC neurons to produce burst firing in response to novel sensory stimuli. (ii) Both electrophysiological and dye–injection experiments support the existence of gap junction–mediated coupling among young and adult TC neurons. This finding indicates that electrical coupling–mediated synchronization might be implicated in the high and low frequency oscillatory activities expressed by this type of thalamic neuron. (iii) Spontaneous intracellular Ca2+ ([Ca2+]i) waves propagating among thalamic astrocytes are able to elicit large and long–lasting N–methyl–D–aspartate–mediated currents in TC neurons. The peculiar developmental profile within the first two postnatal weeks of these astrocytic [Ca2+]i transients and the selective activation of these glutamate receptors point to a role for this astrocyte–to–neuron signalling mechanism in the topographic wiring of the thalamocortical loop. As some of these novel cellular and intracellular properties are not restricted to thalamic astrocytes and neurons, their significance may well apply to (patho)physiological functions of glial and neuronal elements in other brain areas.
Resumo:
Astrocytes are now increasingly acknowledged as having fundamental and sophisticated roles in brain function and dysfunction. Unravelling the complex mechanisms that underlie human brain astrocyte-neuron interactions is therefore an essential step on the way to understanding how the brain operates. Insights into astrocyte function to date, have almost exclusively been derived from studies conducted using murine or rodent models. Whilst these have led to significant discoveries, preliminary work with human astrocytes has revealed a hitherto unknown range of astrocyte types with potentially greater functional complexity and increased neuronal interaction with respect to animal astrocytes. It is becoming apparent, therefore, that many important functions of astrocytes will only be discovered by direct physiological interrogation of human astrocytes. Recent advancements in the field of stem cell biology have provided a source of human based models. These will provide a platform to facilitate our understanding of normal astrocyte functions as well as their role in CNS pathology. A number of recent studies have demonstrated that stem cell derived astrocytes exhibit a range of properties, suggesting that they may be functionally equivalent to their in vivo counterparts. Further validation against in vivo models will ultimately confirm the future utility of these stem-cell based approaches in fulfilling the need for human- based cellular models for basic and clinical research. In this review we discuss the roles of astrocytes in the brain and highlight the extent to which human stem cell derived astrocytes have demonstrated functional activities that are equivalent to that observed in vivo.
Resumo:
Factors associated with survival were studied in 84 neuropathologically documented cases of the pre-senile dementia frontotemporal dementia lobar degeneration (FTLD) with transactive response (TAR) DNA-binding protein of 43 kDa (TDP-43) proteinopathy (FTLD-TDP). Kaplan-Meier survival analysis estimated mean survival as 7.9 years (range: 1-19 years, SD = 4.64). Familial and sporadic cases exhibited similar survival, including progranulin (GRN) gene mutation cases. No significant differences in survival were associated with sex, disease onset, Braak disease stage, or disease subtype, but higher survival was associated with lower post-mortem brain weight. Survival was significantly reduced in cases with associated motor neuron disease (FTLD-MND) but increased with Alzheimer's disease (AD) or hippocampal sclerosis (HS) co-morbidity. Cox regression analysis suggested that reduced survival was associated with increased densities of neuronal cytoplasmic inclusions (NCI) while increased survival was associated with greater densities of enlarged neurons (EN) in the frontal and temporal lobes. The data suggest that: (1) survival in FTLD-TDP is more prolonged than typical in pre-senile dementia but shorter than some clinical subtypes such as the semantic variant of primary progressive aphasia (svPPA), (2) MND co-morbidity predicts poor survival, and (3) NCI may develop early and EN later in the disease. The data have implications for both neuropathological characterization and subtyping of FTLD-TDP.