39 resultados para Multiobjective Genetic Algorithm
Resumo:
Transportation service operators are witnessing a growing demand for bi-directional movement of goods. Given this, the following thesis considers an extension to the vehicle routing problem (VRP) known as the delivery and pickup transportation problem (DPP), where delivery and pickup demands may occupy the same route. The problem is formulated here as the vehicle routing problem with simultaneous delivery and pickup (VRPSDP), which requires the concurrent service of the demands at the customer location. This formulation provides the greatest opportunity for cost savings for both the service provider and recipient. The aims of this research are to propose a new theoretical design to solve the multi-objective VRPSDP, provide software support for the suggested design and validate the method through a set of experiments. A new real-life based multi-objective VRPSDP is studied here, which requires the minimisation of the often conflicting objectives: operated vehicle fleet size, total routing distance and the maximum variation between route distances (workload variation). The former two objectives are commonly encountered in the domain and the latter is introduced here because it is essential for real-life routing problems. The VRPSDP is defined as a hard combinatorial optimisation problem, therefore an approximation method, Simultaneous Delivery and Pickup method (SDPmethod) is proposed to solve it. The SDPmethod consists of three phases. The first phase constructs a set of diverse partial solutions, where one is expected to form part of the near-optimal solution. The second phase determines assignment possibilities for each sub-problem. The third phase solves the sub-problems using a parallel genetic algorithm. The suggested genetic algorithm is improved by the introduction of a set of tools: genetic operator switching mechanism via diversity thresholds, accuracy analysis tool and a new fitness evaluation mechanism. This three phase method is proposed to address the shortcoming that exists in the domain, where an initial solution is built only then to be completely dismantled and redesigned in the optimisation phase. In addition, a new routing heuristic, RouteAlg, is proposed to solve the VRPSDP sub-problem, the travelling salesman problem with simultaneous delivery and pickup (TSPSDP). The experimental studies are conducted using the well known benchmark Salhi and Nagy (1999) test problems, where the SDPmethod and RouteAlg solutions are compared with the prominent works in the VRPSDP domain. The SDPmethod has demonstrated to be an effective method for solving the multi-objective VRPSDP and the RouteAlg for the TSPSDP.
Resumo:
Batch-mode reverse osmosis (batch-RO) operation is considered a promising desalination method due to its low energy requirement compared to other RO system arrangements. To improve and predict batch-RO performance, studies on concentration polarization (CP) are carried out. The Kimura-Sourirajan mass-transfer model is applied and validated by experimentation with two different spiral-wound RO elements. Explicit analytical Sherwood correlations are derived based on experimental results. For batch-RO operation, a new genetic algorithm method is developed to estimate the Sherwood correlation parameters, taking into account the effects of variation in operating parameters. Analytical procedures are presented, then the mass transfer coefficient models are developed for different operation processes, i.e., batch-RO and continuous RO. The CP related energy loss in batch-RO operation is quantified based on the resulting relationship between feed flow rates and mass transfer coefficients. It is found that CP increases energy consumption in batch-RO by about 25% compared to the ideal case in which CP is absent. For continuous RO process, the derived Sherwood correlation predicted CP accurately. In addition, we determined the optimum feed flow rate of our batch-RO system.
Resumo:
Vendor-managed inventory (VMI) is a widely used collaborative inventory management policy in which manufacturers manages the inventory of retailers and takes responsibility for making decisions related to the timing and extent of inventory replenishment. VMI partnerships help organisations to reduce demand variability, inventory holding and distribution costs. This study provides empirical evidence that significant economic benefits can be achieved with the use of a genetic algorithm (GA)-based decision support system (DSS) in a VMI supply chain. A two-stage serial supply chain in which retailers and their supplier are operating VMI in an uncertain demand environment is studied. Performance was measured in terms of cost, profit, stockouts and service levels. The results generated from GA-based model were compared to traditional alternatives. The study found that the GA-based approach outperformed traditional methods and its use can be economically justified in small- and medium-sized enterprises (SMEs).
Resumo:
This article presents a laser tracker position optimization code based on the tracker uncertainty model developed by the National Physical Laboratory (NPL). The code is able to find the optimal tracker positions for generic measurements involving one or a network of many trackers, and an arbitrary set of targets. The optimization is performed using pattern search or optionally, genetic algorithm (GA) or particle swarm optimization (PSO). Different objective function weightings for the uncertainties of individual points, distance uncertainties between point pairs, and the angular uncertainties between three points can be defined. Constraints for tracker position limits and minimum measurement distances have also been implemented. Furthermore, position optimization taking into account of lines-of-sight (LOS) within complex CAD geometry have also been demonstrated. The code is simple to use and can be a valuable measurement planning tool.
Resumo:
This article presents a laser tracker position optimization code based on the tracker uncertainty model developed by the National Physical Laboratory (NPL). The code is able to find the optimal tracker positions for generic measurements involving one or a network of many trackers, and an arbitrary set of targets. The optimization is performed using pattern search or optionally, genetic algorithm (GA) or particle swarm optimization (PSO). Different objective function weightings for the uncertainties of individual points, distance uncertainties between point pairs, and the angular uncertainties between three points can be defined. Constraints for tracker position limits and minimum measurement distances have also been implemented. Furthermore, position optimization taking into account of lines-of-sight (LOS) within complex CAD geometry have also been demonstrated. The code is simple to use and can be a valuable measurement planning tool.
Resumo:
We analyze a business model for e-supermarkets to enable multi-product sourcing capacity through co-opetition (collaborative competition). The logistics aspect of our approach is to design and execute a network system where “premium” goods are acquired from vendors at multiple locations in the supply network and delivered to customers. Our specific goals are to: (i) investigate the role of premium product offerings in creating critical mass and profit; (ii) develop a model for the multiple-pickup single-delivery vehicle routing problem in the presence of multiple vendors; and (iii) propose a hybrid solution approach. To solve the problem introduced in this paper, we develop a hybrid metaheuristic approach that uses a Genetic Algorithm for vendor selection and allocation, and a modified savings algorithm for the capacitated VRP with multiple pickup, single delivery and time windows (CVRPMPDTW). The proposed Genetic Algorithm guides the search for optimal vendor pickup location decisions, and for each generated solution in the genetic population, a corresponding CVRPMPDTW is solved using the savings algorithm. We validate our solution approach against published VRPTW solutions and also test our algorithm with Solomon instances modified for CVRPMPDTW.
Resumo:
This thesis presents the study of a two-degree-of-freedom (2 DOF) nonlinear system consisting of two grounded linear oscillators coupled to two separate light weight nonlinear energy sinks of an essentially nonlinear stiffness. In this thesis, Targeted Energy Transfer (TET) and NES concept are introduced. Previous studies and research of Energy pumping and NES are presented. The characters in nonlinear energy pumping have been introduced at the start of the thesis. For the aim to design the application of a tremor reduction assessment device, the knowledge of tremor reduction has also been mentioned. Two main parties have been presented in the research: dynamical theoretic method of nonlinear energy pumping study and experiments of nonlinear vibration reduction model. In this thesis, nonlinear energy sink (NES) has been studied and used as a core attachment for the research. A new theoretic method of nonlinear vibration reduction which with two NESs has been attached to a primary system has been designed and tested with the technology of targeted energy transfer. Series connection and parallel connection structure systems have been designed to run the tests. Genetic algorithm has been used and presented in the thesis for searching the fit components. One more experiment has been tested with the final components. The results have been compared to find out most efficiency structure and components for the theoretic model. A tremor reduction experiment has been designed and presented in the thesis. The experiment is for designing an application for reducing human body tremor. By using the theoretic method earlier, the experiment has been designed and tested with a tremor reduction model. The experiment includes several tests, one single NES attached system and two NESs attached systems with different structures. The results of theoretic models and experiment models have been compared. The discussion has been made in the end. At the end of the thesis, some further work has been considered to designing the device of the tremor reduction.
Resumo:
This thesis addresses the problem of offline identification of salient patterns in genetic programming individuals. It discusses the main issues related to automatic pattern identification systems, namely that these (a) should help in understanding the final solutions of the evolutionary run, (b) should give insight into the course of evolution and (c) should be helpful in optimizing future runs. Moreover, it proposes an algorithm, Extended Pattern Growing Algorithm ([E]PGA) to extract, filter and sort the identified patterns so that these fulfill as many as possible of the following criteria: (a) they are representative for the evolutionary run and/or search space, (b) they are human-friendly and (c) their numbers are within reasonable limits. The results are demonstrated on six problems from different domains.
Resumo:
In this paper we study the generation of lace knitting stitch patterns by using genetic programming. We devise a genetic representation of knitting charts that accurately reflects their usage for hand knitting the pattern. We apply a basic evolutionary algorithm for generating the patterns, where the key of success is evaluation. We propose automatic evaluation of the patterns, without interaction with the user. We present some patterns generated by the method and then discuss further possibilities for bringing automatic evaluation closer to human evaluation. Copyright 2007 ACM.