68 resultados para Multicriteria Decision Support Systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Integrated supplier selection and order allocation is an important decision for both designing and operating supply chains. This decision is often influenced by the concerned stakeholders, suppliers, plant operators and customers in different tiers. As firms continue to seek competitive advantage through supply chain design and operations they aim to create optimized supply chains. This calls for on one hand consideration of multiple conflicting criteria and on the other hand consideration of uncertainties of demand and supply. Although there are studies on supplier selection using advanced mathematical models to cover a stochastic approach, multiple criteria decision making techniques and multiple stakeholder requirements separately, according to authors' knowledge there is no work that integrates these three aspects in a common framework. This paper proposes an integrated method for dealing with such problems using a combined Analytic Hierarchy Process-Quality Function Deployment (AHP-QFD) and chance constrained optimization algorithm approach that selects appropriate suppliers and allocates orders optimally between them. The effectiveness of the proposed decision support system has been demonstrated through application and validation in the bioenergy industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to vigorous globalisation and product proliferation in recent years, more waste has been produced by the soaring manufacturing activities. This has contributed to the significant need for an efficient waste management system to ensure, with all efforts, the waste is properly treated for recycling or disposed. This paper presents a Decision Support System (DSS) framework, based on Constraint Logic Programming (CLP), for the collection management of industrial waste (of all kinds) and discusses the potential employment of Radio-Frequency Identification Technology (RFID) to improve several critical procedures involved in managing waste collection. This paper also demonstrates a widely distributed and semi-structured network of waste producing enterprises (e.g. manufacturers) and waste processing enterprises (i.e. waste recycling/treatment stations) improving their operations planning by means of using the proposed DSS. The potential RFID applications to update and validate information in a continuous manner to bring value-added benefits to the waste collection business are also presented. © 2012 Inderscience Enterprises Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evaluation of geospatial data quality and trustworthiness presents a major challenge to geospatial data users when making a dataset selection decision. The research presented here therefore focused on defining and developing a GEO label – a decision support mechanism to assist data users in efficient and effective geospatial dataset selection on the basis of quality, trustworthiness and fitness for use. This thesis thus presents six phases of research and development conducted to: (a) identify the informational aspects upon which users rely when assessing geospatial dataset quality and trustworthiness; (2) elicit initial user views on the GEO label role in supporting dataset comparison and selection; (3) evaluate prototype label visualisations; (4) develop a Web service to support GEO label generation; (5) develop a prototype GEO label-based dataset discovery and intercomparison decision support tool; and (6) evaluate the prototype tool in a controlled human-subject study. The results of the studies revealed, and subsequently confirmed, eight geospatial data informational aspects that were considered important by users when evaluating geospatial dataset quality and trustworthiness, namely: producer information, producer comments, lineage information, compliance with standards, quantitative quality information, user feedback, expert reviews, and citations information. Following an iterative user-centred design (UCD) approach, it was established that the GEO label should visually summarise availability and allow interrogation of these key informational aspects. A Web service was developed to support generation of dynamic GEO label representations and integrated into a number of real-world GIS applications. The service was also utilised in the development of the GEO LINC tool – a GEO label-based dataset discovery and intercomparison decision support tool. The results of the final evaluation study indicated that (a) the GEO label effectively communicates the availability of dataset quality and trustworthiness information and (b) GEO LINC successfully facilitates ‘at a glance’ dataset intercomparison and fitness for purpose-based dataset selection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vendor-managed inventory (VMI) is a widely used collaborative inventory management policy in which manufacturers manages the inventory of retailers and takes responsibility for making decisions related to the timing and extent of inventory replenishment. VMI partnerships help organisations to reduce demand variability, inventory holding and distribution costs. This study provides empirical evidence that significant economic benefits can be achieved with the use of a genetic algorithm (GA)-based decision support system (DSS) in a VMI supply chain. A two-stage serial supply chain in which retailers and their supplier are operating VMI in an uncertain demand environment is studied. Performance was measured in terms of cost, profit, stockouts and service levels. The results generated from GA-based model were compared to traditional alternatives. The study found that the GA-based approach outperformed traditional methods and its use can be economically justified in small- and medium-sized enterprises (SMEs).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prescribing support tools range from traditional printed texts to state-of-the-art computerised decision support systems. Comparison between available literature is difficult due to country-specific resources often being the focus of the research. In the UK, it is widely accepted that hospitals take their own individualised approaches to reducing prescribing errors. Objective - This study focused on specialist paediatric hospitals. It aimed to identify the localised approaches taken by paediatric hospitals to reduce prescribing errors. Method - Applied thematic analysis was used to explore the publically published board meeting minutes from the four specialist stand-alone paediatric hospitals in England. Three years of data was collected from each hospital. Codes were collected into groups to identify themes from the data. Results - The main themes identified were clinician involvement in prescribing support is important; credit card-sized reminder tools are used to provide prescribing guidance; electronic prescribing is considered important for reducing prescribing errors; feedback from clinical pharmacists on prescribing errors is widely used; junior doctors require extra support when prescribing; medical records may be incomplete and specific prescribing support (eg, antibiotic prescribing support) is widely in use. Conclusions - There is no single collaborative approach taken to paediatric prescribing support in English paediatric hospitals. Success of electronic prescribing in English paediatric hospitals is considerably behind leaders such as the USA. Use of clinical pharmacists to support prescribers is important as supported by previous studies in Spain and the USA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This special issue of International Journal of Production Research provides a platform for sharing the knowledge base, recent research outputs and a review of recent developments highlighting the critical aspects of green manufacturing supply chain design and operations decision support. The special issue includes 15 contributions presenting new and significant research in the relevant area. Contributions mainly present either a novel green/sustainable manufacturing supply chain design and operations decision support approach applied to a problem, or a state-of-the-art method on green/sustainable factors in supply chain design and operations. The article delineates an overview of the contributions and their significance, and an introspection on the ‘green’ factors involved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose – The purpose of this paper is to examine challenges and potential of big data in heterogeneous business networks and relate these to an implemented logistics solution. Design/methodology/approach – The paper establishes an overview of challenges and opportunities of current significance in the area of big data, specifically in the context of transparency and processes in heterogeneous enterprise networks. Within this context, the paper presents how existing components and purpose-driven research were combined for a solution implemented in a nationwide network for less-than-truckload consignments. Findings – Aside from providing an extended overview of today’s big data situation, the findings have shown that technical means and methods available today can comprise a feasible process transparency solution in a large heterogeneous network where legacy practices, reporting lags and incomplete data exist, yet processes are sensitive to inadequate policy changes. Practical implications – The means introduced in the paper were found to be of utility value in improving process efficiency, transparency and planning in logistics networks. The particular system design choices in the presented solution allow an incremental introduction or evolution of resource handling practices, incorporating existing fragmentary, unstructured or tacit knowledge of experienced personnel into the theoretically founded overall concept. Originality/value – The paper extends previous high-level view on the potential of big data, and presents new applied research and development results in a logistics application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The breadth and depth of available clinico-genomic information, present an enormous opportunity for improving our ability to study disease mechanisms and meet the individualised medicine needs. A difficulty occurs when the results are to be transferred 'from bench to bedside'. Diversity of methods is one of the causes, but the most critical one relates to our inability to share and jointly exploit data and tools. This paper presents a perspective on current state-of-the-art in the analysis of clinico-genomic data and its relevance to medical decision support. It is an attempt to investigate the issues related to data and knowledge integration. Copyright © 2010 Inderscience Enterprises Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with a very important issue in any knowledge engineering discipline: the accurate representation and modelling of real life data and its processing by human experts. The work is applied to the GRiST Mental Health Risk Screening Tool for assessing risks associated with mental-health problems. The complexity of risk data and the wide variations in clinicians' expert opinions make it difficult to elicit representations of uncertainty that are an accurate and meaningful consensus. It requires integrating each expert's estimation of a continuous distribution of uncertainty across a range of values. This paper describes an algorithm that generates a consensual distribution at the same time as measuring the consistency of inputs. Hence it provides a measure of the confidence in the particular data item's risk contribution at the input stage and can help give an indication of the quality of subsequent risk predictions. © 2010 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines the field of knowledge management (KM) and identifies the role of operational research (OR) in key milestones and in KM's future. With the presence of the OR Society journal Knowledge Management Research and Practice and with the INFORMS journal Organization Science, OR may be assumed to have an explicit and a leading role in KM. Unfortunately, the origins and the evidence of recent research efforts do not fully support this assumption. We argue that while OR has been inside many of the milestones there is no explicit recognition of its role and while OR research on KM has considerably increased in the last 5 years, it still forms a rather modest explicit contribution to KM research. Nevertheless, the depth of OR's experience in decision-making models and decision support systems, soft systems with hard systems and in risk management suggests that OR is uniquely placed to lead future KM developments. We suggest that a limiting aspect of whether OR will be seen to have a significant profile will be the extent to which developments are recognized as being informed by OR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is a study of low-dimensional visualisation methods for data visualisation under certainty of the input data. It focuses on the two main feed-forward neural network algorithms which are NeuroScale and Generative Topographic Mapping (GTM) by trying to make both algorithms able to accommodate the uncertainty. The two models are shown not to work well under high levels of noise within the data and need to be modified. The modification of both models, NeuroScale and GTM, are verified by using synthetic data to show their ability to accommodate the noise. The thesis is interested in the controversy surrounding the non-uniqueness of predictive gene lists (PGL) of predicting prognosis outcome of breast cancer patients as available in DNA microarray experiments. Many of these studies have ignored the uncertainty issue resulting in random correlations of sparse model selection in high dimensional spaces. The visualisation techniques are used to confirm that the patients involved in such medical studies are intrinsically unclassifiable on the basis of provided PGL evidence. This additional category of ‘unclassifiable’ should be accommodated within medical decision support systems if serious errors and unnecessary adjuvant therapy are to be avoided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Research into mental-health risks has tended to focus on epidemiological approaches and to consider pieces of evidence in isolation. Less is known about the particular factors and their patterns of occurrence that influence clinicians’ risk judgements in practice. Aims: To identify the cues used by clinicians to make risk judgements and to explore how these combine within clinicians’ psychological representations of suicide, self-harm, self-neglect, and harm to others. Method: Content analysis was applied to semi-structured interviews conducted with 46 practitioners from various mental-health disciplines, using mind maps to represent the hierarchical relationships of data and concepts. Results: Strong consensus between experts meant their knowledge could be integrated into a single hierarchical structure for each risk. This revealed contrasting emphases between data and concepts underpinning risks, including: reflection and forethought for suicide; motivation for self-harm; situation and context for harm to others; and current presentation for self-neglect. Conclusions: Analysis of experts’ risk-assessment knowledge identified influential cues and their relationships to risks. It can inform development of valid risk-screening decision support systems that combine actuarial evidence with clinical expertise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hierarchical knowledge structures are frequently used within clinical decision support systems as part of the model for generating intelligent advice. The nodes in the hierarchy inevitably have varying influence on the decisionmaking processes, which needs to be reflected by parameters. If the model has been elicited from human experts, it is not feasible to ask them to estimate the parameters because there will be so many in even moderately-sized structures. This paper describes how the parameters could be obtained from data instead, using only a small number of cases. The original method [1] is applied to a particular web-based clinical decision support system called GRiST, which uses its hierarchical knowledge to quantify the risks associated with mental-health problems. The knowledge was elicited from multidisciplinary mental-health practitioners but the tree has several thousand nodes, all requiring an estimation of their relative influence on the assessment process. The method described in the paper shows how they can be obtained from about 200 cases instead. It greatly reduces the experts’ elicitation tasks and has the potential for being generalised to similar knowledge-engineering domains where relative weightings of node siblings are part of the parameter space.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The controversy surrounding the non-uniqueness of predictive gene lists (PGL) of small selected subsets of genes from very large potential candidates as available in DNA microarray experiments is now widely acknowledged 1. Many of these studies have focused on constructing discriminative semi-parametric models and as such are also subject to the issue of random correlations of sparse model selection in high dimensional spaces. In this work we outline a different approach based around an unsupervised patient-specific nonlinear topographic projection in predictive gene lists. Methods: We construct nonlinear topographic projection maps based on inter-patient gene-list relative dissimilarities. The Neuroscale, the Stochastic Neighbor Embedding(SNE) and the Locally Linear Embedding(LLE) techniques have been used to construct two-dimensional projective visualisation plots of 70 dimensional PGLs per patient, classifiers are also constructed to identify the prognosis indicator of each patient using the resulting projections from those visualisation techniques and investigate whether a-posteriori two prognosis groups are separable on the evidence of the gene lists. A literature-proposed predictive gene list for breast cancer is benchmarked against a separate gene list using the above methods. Generalisation ability is investigated by using the mapping capability of Neuroscale to visualise the follow-up study, but based on the projections derived from the original dataset. Results: The results indicate that small subsets of patient-specific PGLs have insufficient prognostic dissimilarity to permit a distinction between two prognosis patients. Uncertainty and diversity across multiple gene expressions prevents unambiguous or even confident patient grouping. Comparative projections across different PGLs provide similar results. Conclusion: The random correlation effect to an arbitrary outcome induced by small subset selection from very high dimensional interrelated gene expression profiles leads to an outcome with associated uncertainty. This continuum and uncertainty precludes any attempts at constructing discriminative classifiers. However a patient's gene expression profile could possibly be used in treatment planning, based on knowledge of other patients' responses. We conclude that many of the patients involved in such medical studies are intrinsically unclassifiable on the basis of provided PGL evidence. This additional category of 'unclassifiable' should be accommodated within medical decision support systems if serious errors and unnecessary adjuvant therapy are to be avoided.