40 resultados para Multi-dimensional scaling
Resumo:
Solving many scientific problems requires effective regression and/or classification models for large high-dimensional datasets. Experts from these problem domains (e.g. biologists, chemists, financial analysts) have insights into the domain which can be helpful in developing powerful models but they need a modelling framework that helps them to use these insights. Data visualisation is an effective technique for presenting data and requiring feedback from the experts. A single global regression model can rarely capture the full behavioural variability of a huge multi-dimensional dataset. Instead, local regression models, each focused on a separate area of input space, often work better since the behaviour of different areas may vary. Classical local models such as Mixture of Experts segment the input space automatically, which is not always effective and it also lacks involvement of the domain experts to guide a meaningful segmentation of the input space. In this paper we addresses this issue by allowing domain experts to interactively segment the input space using data visualisation. The segmentation output obtained is then further used to develop effective local regression models.
Resumo:
Abstract (provisional): Background Failing a high-stakes assessment at medical school is a major event for those who go through the experience. Students who fail at medical school may be more likely to struggle in professional practice, therefore helping individuals overcome problems and respond appropriately is important. There is little understanding about what factors influence how individuals experience failure or make sense of the failing experience in remediation. The aim of this study was to investigate the complexity surrounding the failure experience from the student’s perspective using interpretative phenomenological analysis (IPA). Methods The accounts of 3 medical students who had failed final re-sit exams, were subjected to in-depth analysis using IPA methodology. IPA was used to analyse each transcript case-by-case allowing the researcher to make sense of the participant’s subjective world. The analysis process allowed the complexity surrounding the failure to be highlighted, alongside a narrative describing how students made sense of the experience. Results The circumstances surrounding students as they approached assessment and experienced failure at finals were a complex interaction between academic problems, personal problems (specifically finance and relationships), strained relationships with friends, family or faculty, and various mental health problems. Each student experienced multi-dimensional issues, each with their own individual combination of problems, but experienced remediation as a one-dimensional intervention with focus only on improving performance in written exams. What these students needed to be included was help with clinical skills, plus social and emotional support. Fear of termination of the their course was a barrier to open communication with staff. Conclusions These students’ experience of failure was complex. The experience of remediation is influenced by the way in which students make sense of failing. Generic remediation programmes may fail to meet the needs of students for whom personal, social and mental health issues are a part of the picture.
Resumo:
Fibre lasers are light sources that are synonymous with stability. They can give rise to highly coherent continuous-wave radiation, or a stable train of mode locked pulses with well-defined characteristics. However, they can also exhibit an exceedingly diverse range of nonlinear operational regimes spanning a multi-dimensional parameter space. The complex nature of the dynamics poses significant challenges in the theoretical and experimental studies of such systems. Here, we demonstrate how the real-time experimental methodology of spatio-temporal dynamics can be used to unambiguously identify and discern between such highly complex lasing regimes. This two-dimensional representation of laser intensity allows the identification and tracking of individual features embedded in the radiation as they make round-trip circulations inside the cavity. The salient features of this methodology are highlighted by its application to the case of Raman fibre lasers and a partially mode locked ring fibre laser operating in the normal dispersion regime.
Resumo:
We have devised a general scheme that reveals multiple duality relations valid for all multi-channel Luttinger Liquids. The relations are universal and should be used for establishing phase diagrams and searching for new non-trivial phases in low-dimensional strongly correlated systems. The technique developed provides universal correspondence between scaling dimensions of local perturbations in different phases. These multiple relations between scaling dimensions lead to a connection between different inter-phase boundaries on the phase diagram. The dualities, in particular, constrain phase diagram and allow predictions of emergence and observation of new phases without explicit model-dependent calculations. As an example, we demonstrate the impossibility of non-trivial phase existence for fermions coupled to phonons in one dimension. © 2013 EPLA.
Resumo:
A consequence of a loss of coolant accident is that the local insulation material is damaged and maybe transported to the containment sump where it can penetrate and/or block the sump strainers. An experimental and theoretical study, which examines the transport of mineral wool fibers via single and multi-effect experiments is being performed. This paper focuses on the experiments and simulations performed for validation of numerical models of sedimentation and resuspension of mineral wool fiber agglomerates in a racetrack type channel. Three velocity conditions are used to test the response of two dispersed phase fiber agglomerates to two drag correlations and to two turbulent dispersion coefficients. The Eulerian multiphase flow model is applied with either one or two dispersed phases.
Resumo:
We consider the problem of illusory or artefactual structure from the visualisation of high-dimensional structureless data. In particular we examine the role of the distance metric in the use of topographic mappings based on the statistical field of multidimensional scaling. We show that the use of a squared Euclidean metric (i.e. the SSTRESs measure) gives rise to an annular structure when the input data is drawn from a high-dimensional isotropic distribution, and we provide a theoretical justification for this observation.
Resumo:
A consequence of a loss of coolant accident is the damage of adjacent insulation materials (IM). IM may then be transported to the containment sump strainers where water is drawn into the ECCS (emergency core cooling system). Blockage of the strainers by IM lead to an increased pressure drop acting on the operating ECCS pumps. IM can also penetrate the strainers, enter the reactor coolant system and then accumulate in the reactor pressure vessel. An experimental and theoretical study that concentrates on mineral wool fiber transport in the containment sump and the ECCS is being performed. The study entails fiber generation and the assessment of fiber transport in single and multi-effect experiments. The experiments include measurement of the terminal settling velocity, the strainer pressure drop, fiber sedimentation and resuspension in a channel flow and jet flow in a rectangular tank. An integrated test facility is also operated to assess the compounded effects. Each experimental facility is used to provide data for the validation of equivalent computational fluid dynamic models. The channel flow facility allows the determination of the steady state distribution of the fibers at different flow velocities. The fibers are modeled in the Eulerian-Eulerian reference frame as spherical wetted agglomerates. The fiber agglomerate size, density, the relative viscosity of the fluid-fiber mixture and the turbulent dispersion of the fibers all affect the steady state accumulation of fibers at the channel base. In the current simulations, two fiber phases are separately considered. The particle size is kept constant while the density is modified, which affects both the terminal velocity and volume fraction. The relative viscosity is only significant at higher concentrations. The numerical model finds that the fibers accumulate at the channel base even at high velocities; therefore, modifications to the drag and turbulent dispersion forces can be made to reduce fiber accumulation.
Resumo:
Linked Data semantic sources, in particular DBpedia, can be used to answer many user queries. PowerAqua is an open multi-ontology Question Answering (QA) system for the Semantic Web (SW). However, the emergence of Linked Data, characterized by its openness, heterogeneity and scale, introduces a new dimension to the Semantic Web scenario, in which exploiting the relevant information to extract answers for Natural Language (NL) user queries is a major challenge. In this paper we discuss the issues and lessons learned from our experience of integrating PowerAqua as a front-end for DBpedia and a subset of Linked Data sources. As such, we go one step beyond the state of the art on end-users interfaces for Linked Data by introducing mapping and fusion techniques needed to translate a user query by means of multiple sources. Our first informal experiments probe whether, in fact, it is feasible to obtain answers to user queries by composing information across semantic sources and Linked Data, even in its current form, where the strength of Linked Data is more a by-product of its size than its quality. We believe our experiences can be extrapolated to a variety of end-user applications that wish to scale, open up, exploit and re-use what possibly is the greatest wealth of data about everything in the history of Artificial Intelligence. © 2010 Springer-Verlag.
Resumo:
Projection of a high-dimensional dataset onto a two-dimensional space is a useful tool to visualise structures and relationships in the dataset. However, a single two-dimensional visualisation may not display all the intrinsic structure. Therefore, hierarchical/multi-level visualisation methods have been used to extract more detailed understanding of the data. Here we propose a multi-level Gaussian process latent variable model (MLGPLVM). MLGPLVM works by segmenting data (with e.g. K-means, Gaussian mixture model or interactive clustering) in the visualisation space and then fitting a visualisation model to each subset. To measure the quality of multi-level visualisation (with respect to parent and child models), metrics such as trustworthiness, continuity, mean relative rank errors, visualisation distance distortion and the negative log-likelihood per point are used. We evaluate the MLGPLVM approach on the ‘Oil Flow’ dataset and a dataset of protein electrostatic potentials for the ‘Major Histocompatibility Complex (MHC) class I’ of humans. In both cases, visual observation and the quantitative quality measures have shown better visualisation at lower levels.
Resumo:
In dimensional metrology, often the largest source of uncertainty of measurement is thermal variation. Dimensional measurements are currently scaled linearly, using ambient temperature measurements and coefficients of thermal expansion, to ideal metrology conditions at 20˚C. This scaling is particularly difficult to implement with confidence in large volumes as the temperature is unlikely to be uniform, resulting in thermal gradients. A number of well-established computational methods are used in the design phase of product development for the prediction of thermal and gravitational effects, which could be used to a greater extent in metrology. This paper outlines the theory of how physical measurements of dimension and temperature can be combined more comprehensively throughout the product lifecycle, from design through to the manufacturing phase. The Hybrid Metrology concept is also introduced: an approach to metrology, which promises to improve product and equipment integrity in future manufacturing environments. The Hybrid Metrology System combines various state of the art physical dimensional and temperature measurement techniques with established computational methods to better predict thermal and gravitational effects.