63 resultados para Multi-criteria Decision Support (MCDS)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

After a proliferation of logistics e-Marketplaces during the dot.com boom of 1998-2000, there has been a high rate of failure and survivals are developing much more slowly than expected. This is the case in the aviation industry where a large number of B2B e-Marketplaces emerged according to the focus of aviation companies’ strategies on electronic B2B in the late 1990s. However, the current use of e-Marketplaces in the industry is low and many of them have ceased trading. The traditional e-Marketplaces model has been characterised by poor quality portals and a lack of technical standards. Such an approach is unsustainable in today’s competitive scenario. Improvements in website quality attributes may strongly contribute to the simplification of website functionality by users and speed up communication with all supply chain partners. In this context, it appears critical to develop models for the evaluation of e-Marketplace web sites. This chapter, after a discussion about the development of e-Marketplaces in the transport and logistics service industry and its application in the aviation industry, proposes a multi-criteria model for assessing different types of aeronautic B2B e-Marketplaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hospitals everywhere are integrating health data using electronic health record (EHR) systems, and disparate and multimedia patient data can be input by different caregivers at different locations as encapsulated patient profiles. Healthcare institutions are also using the flexibility and speed of wireless computing to improve quality and reduce costs. We are developing a mobile application that allows doctors to efficiently record and access complete and accurate real-time patient information. The system integrates medical imagery with textual patient profiles as well as expert interactions by healthcare personnel using knowledge management and case-based reasoning techniques. The application can assist other caregivers in searching large repositories of previous patient cases. Patients' symptoms can be input to a portable device and the application can quickly retrieve similar profiles which can be used to support effective diagnoses and prognoses by comparing symptoms, treatments, diagnosis, test results and other patient information. © 2007 Sage Publications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the field of mental health risk assessment, there is no standardisation between the data used in different systems. As a first step towards the possible interchange of data between assessment tools, an ontology has been constructed for a particular one, GRiST (Galatean Risk Screening Tool). We briefly introduce GRiST and its data structures, then describe the ontology and the benefits that have already been realised from the construction process. For example, the ontology has been used to check the consistency of the various trees used in the model. We then consider potential uses in integration of data from other sources. © 2009 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presents information on a study which proposed a decision support system (DSS) for a petroleum pipeline route selection with the application of analytical hierarchy process. Factors governing route-selection for cross-country petroleum pipelines; Application of the DSS from an Indian perspective; Cost benefit comparison of the shortest route and the optimal route; Results and findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: To explore current risk assessment processes in general practice and Improving Access to Psychological Therapies (IAPT) services, and to consider whether the Galatean Risk and Safety Tool (GRiST) can help support improved patient care. Background: Much has been written about risk assessment practice in secondary mental health care, but little is known about how it is undertaken at the beginning of patients' care pathways, within general practice and IAPT services. Methods: Interviews with eight general practice and eight IAPT clinicians from two primary care trusts in the West Midlands, UK, and eight service users from the same region. Interviews explored current practice and participants' views and experiences of mental health risk assessment. Two focus groups were also carried out, one with general practice and one with IAPT clinicians, to review interview findings and to elicit views about GRiST from a demonstration of its functionality. Data were analysed using thematic analysis. Findings Variable approaches to mental health risk assessment were observed. Clinicians were anxious that important risk information was being missed, and risk communication was undermined. Patients felt uninvolved in the process, and both clinicians and patients expressed anxiety about risk assessment skills. Clinicians were positive about the potential for GRiST to provide solutions to these problems. Conclusions: A more structured and systematic approach to risk assessment in general practice and IAPT services is needed, to ensure important risk information is captured and communicated across the care pathway. GRiST has the functionality to support this aspect of practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to vigorous globalisation and product proliferation in recent years, more waste has been produced by the soaring manufacturing activities. This has contributed to the significant need for an efficient waste management system to ensure, with all efforts, the waste is properly treated for recycling or disposed. This paper presents a Decision Support System (DSS) framework, based on Constraint Logic Programming (CLP), for the collection management of industrial waste (of all kinds) and discusses the potential employment of Radio-Frequency Identification Technology (RFID) to improve several critical procedures involved in managing waste collection. This paper also demonstrates a widely distributed and semi-structured network of waste producing enterprises (e.g. manufacturers) and waste processing enterprises (i.e. waste recycling/treatment stations) improving their operations planning by means of using the proposed DSS. The potential RFID applications to update and validate information in a continuous manner to bring value-added benefits to the waste collection business are also presented. © 2012 Inderscience Enterprises Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evaluation of geospatial data quality and trustworthiness presents a major challenge to geospatial data users when making a dataset selection decision. The research presented here therefore focused on defining and developing a GEO label – a decision support mechanism to assist data users in efficient and effective geospatial dataset selection on the basis of quality, trustworthiness and fitness for use. This thesis thus presents six phases of research and development conducted to: (a) identify the informational aspects upon which users rely when assessing geospatial dataset quality and trustworthiness; (2) elicit initial user views on the GEO label role in supporting dataset comparison and selection; (3) evaluate prototype label visualisations; (4) develop a Web service to support GEO label generation; (5) develop a prototype GEO label-based dataset discovery and intercomparison decision support tool; and (6) evaluate the prototype tool in a controlled human-subject study. The results of the studies revealed, and subsequently confirmed, eight geospatial data informational aspects that were considered important by users when evaluating geospatial dataset quality and trustworthiness, namely: producer information, producer comments, lineage information, compliance with standards, quantitative quality information, user feedback, expert reviews, and citations information. Following an iterative user-centred design (UCD) approach, it was established that the GEO label should visually summarise availability and allow interrogation of these key informational aspects. A Web service was developed to support generation of dynamic GEO label representations and integrated into a number of real-world GIS applications. The service was also utilised in the development of the GEO LINC tool – a GEO label-based dataset discovery and intercomparison decision support tool. The results of the final evaluation study indicated that (a) the GEO label effectively communicates the availability of dataset quality and trustworthiness information and (b) GEO LINC successfully facilitates ‘at a glance’ dataset intercomparison and fitness for purpose-based dataset selection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vendor-managed inventory (VMI) is a widely used collaborative inventory management policy in which manufacturers manages the inventory of retailers and takes responsibility for making decisions related to the timing and extent of inventory replenishment. VMI partnerships help organisations to reduce demand variability, inventory holding and distribution costs. This study provides empirical evidence that significant economic benefits can be achieved with the use of a genetic algorithm (GA)-based decision support system (DSS) in a VMI supply chain. A two-stage serial supply chain in which retailers and their supplier are operating VMI in an uncertain demand environment is studied. Performance was measured in terms of cost, profit, stockouts and service levels. The results generated from GA-based model were compared to traditional alternatives. The study found that the GA-based approach outperformed traditional methods and its use can be economically justified in small- and medium-sized enterprises (SMEs).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates neural network-based probabilistic decision support system to assess drivers' knowledge for the objective of developing a renewal policy of driving licences. The probabilistic model correlates drivers' demographic data to their results in a simulated written driving exam (SWDE). The probabilistic decision support system classifies drivers' into two groups of passing and failing a SWDE. Knowledge assessment of drivers within a probabilistic framework allows quantifying and incorporating uncertainty information into the decision-making system. The results obtained in a Jordanian case study indicate that the performance of the probabilistic decision support systems is more reliable than conventional deterministic decision support systems. Implications of the proposed probabilistic decision support systems on the renewing of the driving licences decision and the possibility of including extra assessment methods are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This special issue of International Journal of Production Research provides a platform for sharing the knowledge base, recent research outputs and a review of recent developments highlighting the critical aspects of green manufacturing supply chain design and operations decision support. The special issue includes 15 contributions presenting new and significant research in the relevant area. Contributions mainly present either a novel green/sustainable manufacturing supply chain design and operations decision support approach applied to a problem, or a state-of-the-art method on green/sustainable factors in supply chain design and operations. The article delineates an overview of the contributions and their significance, and an introspection on the ‘green’ factors involved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clinical decision support systems (CDSSs) often base their knowledge and advice on human expertise. Knowledge representation needs to be in a format that can be easily understood by human users as well as supporting ongoing knowledge engineering, including evolution and consistency of knowledge. This paper reports on the development of an ontology specification for managing knowledge engineering in a CDSS for assessing and managing risks associated with mental-health problems. The Galatean Risk and Safety Tool, GRiST, represents mental-health expertise in the form of a psychological model of classification. The hierarchical structure was directly represented in the machine using an XML document. Functionality of the model and knowledge management were controlled using attributes in the XML nodes, with an accompanying paper manual for specifying how end-user tools should behave when interfacing with the XML. This paper explains the advantages of using the web-ontology language, OWL, as the specification, details some of the issues and problems encountered in translating the psychological model to OWL, and shows how OWL benefits knowledge engineering. The conclusions are that OWL can have an important role in managing complex knowledge domains for systems based on human expertise without impeding the end-users' understanding of the knowledge base. The generic classification model underpinning GRiST makes it applicable to many decision domains and the accompanying OWL specification facilitates its implementation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Industry practitioners are seeking to create optimal logistics networks through more efficient decision-making leading to a shift of power from a centralized position to a more decentralized approach. This has led to researchers, exploring with vigor, the application of agent based modeling (ABM) in supply chains and more recently, its impact on decision-making. This paper investigates reasons for the shift to decentralized decision-making and the impact on supply chains. Effective decentralization of decision-making with ABM and hybrid modeling is investigated, observing the methods and potential of achieving optimality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose – The purpose of this paper is to examine challenges and potential of big data in heterogeneous business networks and relate these to an implemented logistics solution. Design/methodology/approach – The paper establishes an overview of challenges and opportunities of current significance in the area of big data, specifically in the context of transparency and processes in heterogeneous enterprise networks. Within this context, the paper presents how existing components and purpose-driven research were combined for a solution implemented in a nationwide network for less-than-truckload consignments. Findings – Aside from providing an extended overview of today’s big data situation, the findings have shown that technical means and methods available today can comprise a feasible process transparency solution in a large heterogeneous network where legacy practices, reporting lags and incomplete data exist, yet processes are sensitive to inadequate policy changes. Practical implications – The means introduced in the paper were found to be of utility value in improving process efficiency, transparency and planning in logistics networks. The particular system design choices in the presented solution allow an incremental introduction or evolution of resource handling practices, incorporating existing fragmentary, unstructured or tacit knowledge of experienced personnel into the theoretically founded overall concept. Originality/value – The paper extends previous high-level view on the potential of big data, and presents new applied research and development results in a logistics application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The breadth and depth of available clinico-genomic information, present an enormous opportunity for improving our ability to study disease mechanisms and meet the individualised medicine needs. A difficulty occurs when the results are to be transferred 'from bench to bedside'. Diversity of methods is one of the causes, but the most critical one relates to our inability to share and jointly exploit data and tools. This paper presents a perspective on current state-of-the-art in the analysis of clinico-genomic data and its relevance to medical decision support. It is an attempt to investigate the issues related to data and knowledge integration. Copyright © 2010 Inderscience Enterprises Ltd.