61 resultados para Mirror neurons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glia may be important in the pathology of variant Creutzfeldt-Jakob disease (vCJD) in several ways: (1) glial cells could be involved in the formation of prion protein (PrPsc) deposits, (2) PrPsc deposits could stimulate the production of astrocytes and microglia, (3) PrPsc deposits could damage adjacent glial cells, and (4) glial cells could remove PrPsc from the brain. To investigate the significance of glial cells in vCJD, the relationships between PrPsc deposits and their associated glia, together with neurons and blood vessels, was studied in six cases of vCJD. Multicentric PrPsc deposits were the largest and least frequent type of deposit observed and were more commonly associated with glial cells, neuronal perikarya, and blood vessels than the more common diffuse and florid PrPsc deposits. Diffuse PrPsc deposits were more frequently associated with glial cells and neurons than the florid deposits. The ratio of astrocytes to oligodendrocytes adjacent to PrPsc deposits was similar to normal brain but the ratio of astrocytes and oligodendrocytes to microglia was less than in normal brain. The intensity of immunolabelling of multicentric PrPsc deposits was positively correlated with the presence of associated vacuoles and negatively correlated with the frequency of microglia. The patterns of correlation between deposit morphology and associated glial cells and neurons were similar for the diffuse and florid type PrPsc deposits. Deposit size was most consistently correlated with the number of associated neurons and vacuoles. The data suggest in vCJD: (1) no evidence that glia were necessary for the formation of PrPsc deposits, (2) an increase in microglia which may be an attempt to remove PrPsc from the bain, and (3) PrPsc deposits could affect adjacent astrocytes and damage the blood brain barrier (BBB).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

STUDY DESIGN: The twy/twy mouse undergoes spontaneous chronic mechanical compression of the spinal cord; this in vivo model system was used to examine the effects of retrograde adenovirus (adenoviral vector [AdV])-mediated brain-derived neurotrophic factor (BDNF) gene delivery to spinal neural cells. OBJECTIVE: To investigate the targeting and potential neuroprotective effect of retrograde AdV-mediated BDNF gene transfection in the chronically compressed spinal cord in terms of prevention of apoptosis of neurons and oligodendrocytes. SUMMARY OF BACKGROUND DATA: Several studies have investigated the neuroprotective effects of neurotrophins, including BDNF, in spinal cord injury. However, no report has described the effects of retrograde neurotrophic factor gene delivery in compressed spinal cords, including gene targeting and the potential to prevent neural cell apoptosis. METHODS: AdV-BDNF or AdV-LacZ (as a control gene) was injected into the bilateral sternomastoid muscles of 18-week old twy/twy mice for retrograde gene delivery via the spinal accessory motor neurons. Heterozygous Institute of Cancer Research mice (+/twy), which do not undergo spontaneous spinal compression, were used as a control for the effects of such compression on gene delivery. The localization and cell specificity of ß-galactosidase expression (produced by LacZ gene transfection) and BDNF expression in the spinal cord were examined by coimmunofluorescence staining for neural cell markers (NeuN, neurons; reactive immunology protein, oligodendrocytes; glial fibrillary acidic protein, astrocytes; OX-42, microglia) 4 weeks after gene injection. The possible neuroprotection afforded by retrograde AdV-BDNF gene delivery versus AdV-LacZ-transfected control mice was assessed by scoring the prevalence of apoptotic cells (terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling-positive cells) and immunoreactivity to active caspases -3, -8, and -9, p75, neurofilament 200 kD (NF), and for the oligodendroglial progenitor marker, NG2. RESULTS.: Four weeks after injection, the retrograde delivery of the LacZ marker gene was identified in cervical spinal neurons and some glial cells, including oligodendrocytes in the white matter of the spinal cord, in both the twy/twy mouse and the heterozygous Institute of Cancer Research mouse (+/twy). In the compressed spinal cord of twy/twy mouse, AdV-BDNF gene transfection resulted in a significant decrease in the number of terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling-positive cells present in the spinal cord and a downregulation in the caspase apoptotic pathway compared with AdV-LacZ (control) gene transfection. There was a marked and significant increase in the areas of the spinal cord of AdV-BDNF-injected mice that were NF- and NG2-immunopositive compared with AdV-LacZ-injected mice, indicating the increased presence of neurons and oligodendrocytes in response to BDNF transfection. CONCLUSION: Our results demonstrate that targeted retrograde BDNF gene delivery suppresses apoptosis in neurons and oligodendrocytes in the chronically compressed spinal cord of twy/twy mouse. Further work is required to establish whether this method of gene delivery may provide neuroprotective effects in other situations of compressive spinal cord injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abnormally enlarged neurons (AEN) occur in many neurodegenerative diseases. To define AEN more objectively, the frequency distribution of the ratio of greatest cell diameter(CD) to greatest nuclear diameter (ND) was studied in populations of cortical neurons in tissue sections of seven cognitively normal brains. The frequency distribution of CD/ND deviated from a normal distribution in 15 out of 18 populations of neurons studied and hence, the 95th percentile (95P) was used to define a limit of the CD/ND ratio excluding the5% most extreme observations. The 95P of the CD/ ND ratio varied from 2.0 to 3.0 in different cases and regions and a value of 95P = 3.0 was chosen to define the limit for normalneurons under non-pathological conditions. Based on the 95P = 3.0 criterion, the proportion of AEN with a CD/ND ≥ 3 varied from 2.6% in Alzheimer's disease (AD) to 20.3% in Pick's disease (PiD). The data suggest: (1) that a CL/ND ≥ 3.0 may be a useful morphological criterion for defining AEN, and (2) AEN were most numerous in PiD and corticobasal degeneration (CBD) and least abundant in AD and in dementia with Lewy bodies (DLB). © 2013 Dustri-Verlag Dr. K. Feistle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A passively switched Ho3+, Pr3+ codoped fluoride fiber laser using a semiconductor saturable absorber mirror (SESAM) is demonstrated. Q-switching and partial mode-locking were observed with the output power produced at a slope efficiency of 24% with respect to the absorbed pump power. The partially mode-locked 2.87 µm pulses operated at a repetition rate of 27.1 MHz with an average power of 132 mW, pulse energy of 4.9 nJ, and pulse width of 24 ps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthesis of a sharp switching characteristic is experimentally demonstrated by concatenation of nonlinear optical loop mirrors. A novel configuration has been used which results in three terminal operation of the device. This device can be used as a logic gate and for pulse shaping to produce square pulses. © 1993 Taylor and Francis Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonlinear optical loop mirror (NOLM) requires breaking the loop symmetry to enable the counter propagating pulses to acquire a differential π phase shift. This is achieved with either an asymmetric fused fibre coupler at the input or by the inclusion of an asymmetrically located gain or loss element within the loop. By introducing a frequency selective loss element, nonlinear switching may be confined to a narrow band of wavelengths or multiple wavelengths. This configuration may have applications in time-wavelength demultiplexing. We demonstrate this technique of bandpass switching in the soliton regime using a fibre-Bragg grating reflector as the wavelength dependent loss.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel all-optical regeneration technique using loop-mirror intensity-filtering and nonlinear broadening in normal-dispersion fibre is described. The device offers 2R-regeneration function and phase margin improvement. The technique is applied to 40Gbit/s return-to-zero optical data streams.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The issues involved in employing nonlinear optical loop mirrors (NOLMs) as intensity filters in picosecond soliton transmission were examined in detail. It was shown that inserting NOLMs into a periodically amplified transmission line allowed picosecond solitons to be transmitted under conditions considered infeasible until now. The loop mirrors gave dual function, removing low-power background dispersive waves through saturable absorption and applying a negative feedback mechanism to control the amplitude of the solitons. The stochastic characteristics of the pulses that were due to amplifier spontaneous-emission noise were investigated, and a number of new properties were determined. In addition, the mutual interaction between pulses was also significantly different from that observed for longer-duration solitons. The impact of Raman scattering in the computations was included and it was shown that soliton self-frequency shifts may be eliminated by appropriate bandwidth restrictions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel simple all-optical nonlinear pulse processing technique using loop mirror intensity filtering and nonlinear broadening in normal dispersion fiber is described. The pulse processor offers reamplification and cleaning up of the optical signals and phase margin improvement. The efficiency of the technique is demonstrated by application to 40-Gb/s return-to-zero optical data streams. © 2004 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a concept for all-optical regeneration of signals modulated in phase-sensitive modulation formats, which is based on a new design of Raman amplified nonlinear optical loop mirror (RA-NOLM). We demonstrate simultaneous amplitude-shape regeneration and phase-noise reduction in high-speed differential phase-shift-keying transmission systems by use of the RA-NOLM combined with spectral filtering. © 2006 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-speed optical clock recovery, demultiplexing and data regeneration will be integral parts of any future photonic network based on high bit-rate OTDM. Much research has been conducted on devices that perform these functions, however to date each process has been demonstrated independently. A very promising method of all-optical switching is that of a semiconductor optical amplifier-based nonlinear optical loop mirror (SOA-NOLM). This has various advantages compared with the standard fiber NOLM, most notably low switching power, compact size and stability. We use the SOA-NOLM as an all-optical mixer in a classical phase-locked loop arrangement to achieve optical clock recovery, while at the same time achieving data regeneration in a single compact device