418 resultados para Mironenko, Sergei
Resumo:
We present the first experimental implementation of a recently designed quasi-lossless fiber span with strongly reduced signal power excursion. The resulting fiber waveguide medium can be advantageously used both in lightwave communications and in all-optical nonlinear data processing.
Resumo:
We present the first experimental implementation of a recently designed quasi-lossless fibre span with strongly reduced signal power excursion. The resulting fibre waveguide medium can be advantageously used both in lightwave communications and in all-optical nonlinear data processing.
Resumo:
All-optical data processing is expected to play a major role in future optical communications. Nonlinear effects in optical fibres have many attractive features and a great, not yet fully explored potential in optical signal processing. Here, we overview our recent advances in developing novel techniques and approaches to all-optical processing based on optical fibre nonlinearities.
Resumo:
We analyze the physical mechanisms limiting optical fiber resonator length and report on the longest ever laser cavity, reaching 270 km, which shows a clearly resolvable mode structure with a width of ~120??Hz and peak separation of ~380Hz in the radio-frequency spectrum.
Resumo:
We introduce a novel transmission technique of periodic in-line all-optical format conversion between return-to-zero and non-return-to-zero-like aimed at delaying the accumulation of format-specific impairments. A particular realization of this approach using in-line normal dispersion fibre-enhanced nonlinear optical loop mirrors at 40Gbit/s data rate is presented. © 2004 Optical Society of America.
Resumo:
Improving bit error rates in optical communication systems is a difficult and important problem. The error correction must take place at high speed and be extremely accurate. We show the feasibility of using hardware implementable machine learning techniques. This may enable some error correction at the speed required.
Resumo:
Optical fiber materials exhibit a nonlinear response to strong electric fields, such as those of optical signals confined within the small fiber core. Fiber nonlinearity is an essential component in the design of the next generation of advanced optical communication systems, but its use is often avoided by engineers because of its intractability. The application of nonlinear technologies in fiber optics offers new opportunities for the design of photonic systems and devices. In this chapter, we make an overview of recent progress in mathematical theory and practical applications of temporal dissipative solitons and self-similar nonlinear structures in optical fiber systems. The design of all-optical high-speed signal processing devices, based on nonlinear dissipative structures, is discussed.
Resumo:
We introduce the concept of noncoherent optical pulse discrimination from a coherent (or partially coherent) signal of the same energy using the phenomenon of soliton generation. The impact of randomization of the optical signal content on the observable characteristics of soliton generation is examined and quantified for the particular example of a rectangular pulse.
Resumo:
We propose to exploit a self-focusing effect in the atmosphere to assist delivering powerful laser beams from orbit to the ground. We demonstrate through numerical modeling that when the self-focusing length is comparable with the atmosphere height the spot size on the ground can be reduced well below the diffraction limits without beam quality degradation. The density variation suppresses beam filamentation and provides the self-focusing of the beam as a whole. The use of light self-focusing in the atmosphere can greatly relax the requirements for the orbital optics and ground receivers.
Resumo:
Using a cavity mode model we study numerically the impact of bandwidth and spectral response profile of fibre Bragg gratings on four-wave-mixing-induced spectral broadening of radiation generated in 6 km and 22 km SMF-based Raman fibre lasers.
Resumo:
We demonstrate mode-locking and single-pulse generation in fibre laser with record-setting cavity length of 25 km. Substantial increase in the pulse round trip duration leads to ultra-low repetition rate of 8.097 kHz and pulse energy of 3.7 uJ.
Resumo:
We extend the theory of dispersion-managed solitons to dissipative systems with a focus on mode-locked fiber lasers. Dissipative structures exist at high map strengths, leading to the generation of stable, short pulses with high energy. Two types of intramap pulse evolution are observed depending on the net cavity dispersion. These are characterized by a reduced model, and semianalytical solutions are obtained.
Resumo:
We determine through numerical modelling the conditions for the generation of triangular-shaped optical pulses in a nonlinear, normally dispersive (ND) fibre and experimentally demonstrate triangular pulse formation in conventional ND fibre.
Resumo:
A theoretical model is developed which characterizes the intracavity pulse evolutions in high-power fiber lasers. It is shown that experimentally observed dynamics of the key pulse parameters can be described by a reduced model of ordinary differential equations. Critical in driving the intracavity dynamics is the amplitude and phase modulations generated by the discrete elements in the laser. The theory gives a simple geometrical description of the intracavity dynamics and possible operation modes of the laser cavity. Furthermore, it provides a simple and efficient method for optimizing the performance of complex multiparametric laser systems.
Resumo:
Using a fiber laser system as a specific illustrative example, we introduce the concept of intermediate asymptotic states in finite nonlinear optical systems. We show that intermediate asymptotics of nonlinear equations (e.g., coherent structures with a finite lifetime or distance) can be used in applications similar to those of truly stable asymptotic solutions, such as, e.g., solitons and dissipative nonlinear waves. Applying this general idea to a particular, albeit practically important, physical system, we demonstrate a novel type of nonlinear pulse-shaping regime in a mode-locked fiber laser leading to the generation of linearly chirped pulses with a triangular distribution of the intensity.