48 resultados para Mergers and acquisitions, analysts, consensus forecast error
Resumo:
Purpose. To evaluate the repeatability and reproducibility of subfoveal choroidal thickness (CT) calculations performed manually using optical coherence tomography (OCT). Methods. The CT was imaged in vivo at each of two visits on 11 healthy volunteers (mean age, 35.72 ± 13.19 years) using the spectral domain OCT. CT was manually measured after applying ImageJ processing filters on 15 radial subfoveal scans. Each radial scan was spaced 12° from each other and contained 2500 A-scans. The coefficient of variability, coefficient of repeatability (CoR), coefficient of reproducibility, and intraclass correlation coefficient determined the reproducibility and repeatability of the calculation. Axial length (AL) and mean spherical equivalent refractive error were measured with the IOLMaster and an open view autorefractor to study their potential relationship with CT. Results. The within-visit and between-visit coefficient of variability, CoR, coefficient of reproducibility, and intraclass correlation coefficient were 0.80, 2.97% 2.44%, and 99%, respectively. The subfoveal CT correlated significantly with AL (R = -0.60, p = 0.05). Conclusions. The subfoveal CT could be measured manually in vivo using OCT and the readings obtained from the healthy subjects evaluated were repeatable and reproducible. It is proposed that OCT could be a useful instrument to perform in vivo assessment and monitoring of CT changes in retinal disease. The preliminary results suggest a negative correlation between subfoveal CT and AL in such a way that it decreases with increasing AL but not with refractive error.
Resumo:
Traditional high speed machinery actuators are powered and coordinated by mechanical linkages driven from a central drive, but these linkages may be replaced by independently synchronised electric drives. Problems associated with utilising such electric drives for this form of machinery were investigated. The research concentrated on a high speed rod-making machine, which required control of high inertias (0.01-0.5kgm2), at continuous high speed (2500 r/min), with low relative phase errors between two drives (0.0025 radians). Traditional minimum energy drive selection techniques for incremental motions were not applicable to continuous applications which require negligible energy dissipation. New selection techniques were developed. A brushless configuration constant enabled the comparison between seven different servo systems; the rate earth brushless drives had the best power rates which is a performance measure. Simulation was used to review control strategies, such that a microprocessor controller with a proportional velocity loop within a proportional position loop with velocity feedforward was designed. Local control schemes were investigated as means of reducing relative errors between drives: the slave of a master/slave scheme compensates for the master's errors: the matched scheme has drives with similar absolute errors so the relative error is minimised, and the feedforward scheme minimises error by adding compensation from previous knowledge. Simulation gave an approximate velocity loop bandwidth and position loop gain required to meet the specification. Theoretical limits for these parameters were defined in terms of digital sampling delays, quantisation, and system phase shifts. Performance degradation due to mechanical backlash was evaluated. Thus any drive could be checked to ensure that the performance specification could be realised. A two drive demonstrator was commissioned with 0.01kgm2 loads. By use of simulation the performance of one drive was improved by increasing the velocity loop bandwidth fourfold. With the master/slave scheme relative errors were within 0.0024 radians at a constant 2500 r/min for two 0.01 kgm^2 loads.
Resumo:
Purpose: A clinical evaluation of the Grand Seiko Auto Ref/Keratometer WAM-5500 (Japan) was performed to evaluate validity and repeatability compared with non-cycloplegic subjective refraction and Javal–Schiotz keratometry. An investigation into the dynamic recording capabilities of the instrument was also conducted. Methods: Refractive error measurements were obtained from 150 eyes of 75 subjects (aged 25.12 ± 9.03 years), subjectively by a masked optometrist, and objectively with the WAM-5500 at a second session. Keratometry measurements from the WAM-5500 were compared to Javal–Schiotz readings. Intratest variability was examined on all subjects, whilst intertest variability was assessed on a subgroup of 44 eyes 7–14 days after the initial objective measures. The accuracy of the dynamic recording mode of the instrument and its tolerance to longitudinal movement was evaluated using a model eye. An additional evaluation of the dynamic mode was performed using a human eye in relaxed and accommodated states. Results: Refractive error determined by the WAM-5500 was found to be very similar (p = 0.77) to subjective refraction (difference, -0.01 ± 0.38 D). The instrument was accurate and reliable over a wide range of refractive errors (-6.38 to +4.88 D). WAM-5500 keratometry values were steeper by approximately 0.05 mm in both the vertical and horizontal meridians. High intertest repeatability was demonstrated for all parameters measured: for sphere, cylinder power and MSE, over 90% of retest values fell within ±0.50 D of initial testing. In dynamic (high-speed) mode, the root-mean-square of the fluctuations was 0.005 ± 0.0005 D and a high level of recording accuracy was maintained when the measurement ring was significantly blurred by longitudinal movement of the instrument head. Conclusion: The WAM-5500 Auto Ref/Keratometer represents a reliable and valid objective refraction tool for general optometric practice, with important additional features allowing pupil size determination and easy conversion into high-speed mode, increasing its usefulness post-surgically following accommodating intra-ocular lens implantation, and as a research tool in the study of accommodation.
Resumo:
1. Fitting a linear regression to data provides much more information about the relationship between two variables than a simple correlation test. A goodness of fit test of the line should always be carried out. Hence, r squared estimates the strength of the relationship between Y and X, ANOVA whether a statistically significant line is present, and the ‘t’ test whether the slope of the line is significantly different from zero. 2. Always check whether the data collected fit the assumptions for regression analysis and, if not, whether a transformation of the Y and/or X variables is necessary. 3. If the regression line is to be used for prediction, it is important to determine whether the prediction involves an individual y value or a mean. Care should be taken if predictions are made close to the extremities of the data and are subject to considerable error if x falls beyond the range of the data. Multiple predictions require correction of the P values. 3. If several individual regression lines have been calculated from a number of similar sets of data, consider whether they should be combined to form a single regression line. 4. If the data exhibit a degree of curvature, then fitting a higher-order polynomial curve may provide a better fit than a straight line. In this case, a test of whether the data depart significantly from a linear regression should be carried out.
Resumo:
Cold roll forming is an extremely important but little studied sheet metal forming process. In this thesis, the process of cold roll forming is introduced and it is seen that form roll design is central to the cold roll forming process. The conventional design and manufacture of form rolls is discussed and it is observed that surrounding the design process are a number of activities which although peripheral are time consuming and a possible source of error. A CAD/CAM system is described which alleviates many of the problems traditional to form roll design. New techniques for the calculation of strip length and controlling the means of forming bends are detailed. The CAD/CAM system's advantages and limitations are discussed and, whilst the system has numerous significant advantages, its principal limitation can be said to be the need to manufacture form rolls and test them on a mill before a design can be stated satisfactory. A survey of the previous theoretical and experimental analysis of cold roll forming is presented and is found to be limited. By considering the previous work, a method of numerical analysis of the cold roll forming process is proposed based on a minimum energy approach. Parallel to the numerical analysis, a comprehensive range of software has been developed to enhance the designer's visualisation of the effects of his form roll design. A complementary approach to the analysis of form roll design is the generation of form roll design, a method for the partial generation of designs is described. It is suggested that the two approaches should continue in parallel and that the limitation of each approach is knowledge of the cold roll forming process. Hence, an initial experimental investigation of the rolling of channel sections is described. Finally, areas of potential future work are discussed.
Resumo:
This thesis presents an investigation of the structure of people's occupational perceptions. The questionnaires used In this study collected both descriptive information about people's perceptions of occupations and also pair comparison similarities data. The data were collected both in the United States of America and England from samples of subjects who differed in terms of age and sex. This provided, therefore, both cross-cultural and developmental dimensions to the study. A cognitive orientation to the study of vocational behaviour is developed and multidimensional scaling procedures are used to analyze the data. A prime concern of the thesis is to examine the appropriateness of this approach and these techniques to this subject area. The results of this study show that a considerable range of individuaI differences exist in occupational perceptions.0lder subjects have a more complex structure to their perceptions and showed greater consensus as to how they perceived occupations to relate to each other. Younger subjects exhibited a greater range of individual differences in occupational perceptions but had, on average, a simpler subjective occupational structure. The multidimensional scaling procedures used in this study were able to reveal how occupational perceptions were structured, to relate these occupational perceptions to occupational preferences and other evaluative data, and to show that the groupings and structure of occupational perceptions ore similar to the dimensions used in occupational classification schemes. ImpIications of these resultts to vocationaI guidance theory and practice are discussed. The resuIts reported here strongly support both the use of the cognitive approach adopted here and demonstrate the potential of multidimensional scaling techniques for further:research in the field of vocational psychology.
Resumo:
A survey of the existing state-of-the-art of turbine blade manufacture highlights two operations that have not been automated namely that of loading of a turbine blade into an encapsulation die, and that of removing a machined blade from the encapsulation block. The automation of blade decapsulation has not been pursued. In order to develop a system to automate the loading of an encapsulation die a prototype mechanical handling robot has been designed together with a computer controlled encapsulation die. The robot has been designed as a mechanical handling robot of cylindrical geometry, suitable for use in a circular work cell. It is the prototype for a production model to be called `The Cybermate'. The prototype robot is mechanically complete but due to unforeseen circumstances the robot control system is not available (the development of the control system did not form a part of this project), hence it has not been possible to fully test and assess the robot mechanical design. Robot loading of the encapsulation die has thus been simulated. The research work with regard to the encapsulation die has focused on the development of computer controlled, hydraulically actuated, location pins. Such pins compensate for the inherent positional inaccuracy of the loading robot and reproduce the dexterity of the human operator. Each pin comprises a miniature hydraulic cylinder, controlled by a standard bidirectional flow control valve. The precision positional control is obtained through pulsing of the valves under software control, with positional feedback from an 8-bit transducer. A test-rig comprising one hydraulic location pin together with an opposing spring loaded pin has demonstrated that such a pin arrangement can be controlled with a repeatability of +/-.00045'. In addition this test-rig has demonstrated that such a pin arrangement can be used to gauge and compensate for the dimensional error of the component held between the pins, by offsetting the pin datum positions to allow for the component error. A gauging repeatability of +/- 0.00015' was demonstrated. This work has led to the design and manufacture of an encapsulation die comprising ten such pins and the associated computer software. All aspects of the control software except blade gauging and positional data storage have been demonstrated. Work is now required to achieve the accuracy of control demonstrated by the single pin test-rig, with each of the ten pins in the encapsulation die. This would allow trials of the complete loading cycle to take place.
Resumo:
In this demonstration, we will present a semantic environment called the K-Box. The K-Box supports the lightweight integration of knowledge tools, with a focus on semantic tools, but with the flexibility to integrate natural language and conventional tools. We discuss the implementation of the framework, and two existing applications, including details of a new application for developers of semantic workflows. The demonstration will be of interest to developers and researchers of ontology-based knowledge management systems, and semantic desktops, and to analysts working with cross-media information. © 2011 ACM.
Resumo:
This investigation aimed to pinpoint the elements of motor timing control that are responsible for the increased variability commonly found in children with developmental dyslexia on paced or unpaced motor timing tasks (Chapter 3). Such temporal processing abilities are thought to be important for developing the appropriate phonological representations required for the development of literacy skills. Similar temporal processing difficulties arise in other developmental disorders such as Attention Deficit Hyperactivity Disorder (ADHD). Motor timing behaviour in developmental populations was examined in the context of models of typical human timing behaviour, in particular the Wing-Kristofferson model, allowing estimation of the contribution of different timing control systems, namely timekeeper and implementation systems (Chapter 2 and Methods Chapters 4 and 5). Research examining timing in populations with dyslexia and ADHD has been inconsistent in the application of stimulus parameters and so the first investigation compared motor timing behaviour across different stimulus conditions (Chapter 6). The results question the suitability of visual timing tasks which produced greater performance variability than auditory or bimodal tasks. Following an examination of the validity of the Wing-Kristofferson model (Chapter 7) the model was applied to time series data from an auditory timing task completed by children with reading difficulties and matched control groups (Chapter 8). Expected group differences in timing performance were not found, however, associations between performance and measures of literacy and attention were present. Results also indicated that measures of attention and literacy dissociated in their relationships with components of timing, with literacy ability being correlated with timekeeper variance and attentional control with implementation variance. It is proposed that these timing deficits associated with reading difficulties are attributable to central timekeeping processes and so the contribution of error correction to timing performance was also investigated (Chapter 9). Children with lower scores on measures of literacy and attention were found to have a slower or failed correction response to phase errors in timing behaviour. Results from the series of studies suggest that the motor timing difficulty in poor reading children may stem from failures in the judgement of synchrony due to greater tolerance of uncertainty in the temporal processing system.
Resumo:
PURPOSE. To compare the magnitude and time course of nearwork-induced transient myopia (NITM) in preadolescent Hong Kong Chinese myopes and emmetropes. METHOD. Forty-five Hong Kong Chinese children, 35 myopes and 10 emmetropes aged 6 to 12 years (median, 7.5), monocularly viewed a letter target through a Badal lens for 5 minutes at either 5.00- or 2.50-D accommodative demand, followed by 3 minutes of viewing the equivalent target at optical infinity. Accommodative responses were measured continuously with a modified, infrared, objective open-field autorefractor. Accommodative responses were also measured for a countercondition: viewing of a letter target for 5 minutes at optical infinity, followed by 3 minutes of viewing the target at a 5.00-D accommodative demand. The results were compared with tonic accommodation and both subject and family history of refractive error. RESULTS. Retinal-blur-driven NITM was significantly greater in Hong Kong Chinese children with myopic vision than in the emmetropes after both near tasks, but showed no significant dose effect. The NITM was still evident 3 minutes after viewing the 5.00-D near task for 5 minutes. The magnitude of NITM correlated with the accommodative drift after viewing a distant target for more than 4 minutes, but was unrelated to the subjects' or family history of refractive error. CONCLUSIONS. In a preadolescent ethnic population with known predisposition to myopia, there is a significant posttask blur-driven accommodative NITM, which is sustained for longer than has previously been found in white adults.
Resumo:
In this paper, we experimentally demonstrate the seamless integration of full duplex system frequency division duplex (FDD) long-term evolution (LTE) technology with radio over fiber (RoF) for eNodeB (eNB) coverage extension. LTE is composed of quadrature phase-shift keying (QPSK), 16-quadrature amplitude modulation (16-QAM) and 64-QAM, modulated onto orthogonal frequency division multiplexing (OFDM) and single-carrier-frequency division multiplexing for downlink (DL) and uplink (UL) transmissions, respectively. The RoF system is composed of dedicated directly modulated lasers for DL and UL with dense wavelength division multiplexing (DWDM) for instantaneous connections and for Rayleigh backscattering and nonlinear interference mitigation. DL and UL signals have varying carrier frequencies and are categorized as broad frequency spacing (BFS), intermediate frequency spacing (IFS), and narrow frequency spacing (NFS). The adjacent channel leakage ratio (ACLR) for DL and UL with 64-QAM are similar for all frequency spacings while cross talk is observed for NFS. For the best case scenario for DL and UL transmissions we achieve error vector magnitude (EVM) values of ~2.30%, ~2.33%, and ~2.39% for QPSK, 16-QAM, and 64-QAM, respectively, while for the worst case scenario with a NFS EVM is increased by 0.40% for all schemes. © 2009-2012 OSA.
Resumo:
We examine the chief executive officer (CEO) optimism effect on managerial motives for cash holdings and find that optimistic and non-optimistic managers have significantly dissimilar purposes for holding more cash. This is consistent with both theory and evidence that optimistic managers are reluctant to use external funds. Optimistic managers hoard cash for growth opportunities, use relatively more cash for capital expenditure and acquisitions, and save more cash in adverse conditions. By contrast, they hold fewer inventories and receivables and their precautionary demand for cash holdings is less than that of non-optimistic managers. In addition, we consider debt conservatism in our model and find no evidence that optimistic managers’ cash hoarding is related to their preference to use debt conservatively. We also document that optimistic managers hold more cash in bad times than non-optimistic managers do. Our work highlights the crucial role that CEO characteristics play in shaping corporate cash holding policy.
Resumo:
Data fluctuation in multiple measurements of Laser Induced Breakdown Spectroscopy (LIBS) greatly affects the accuracy of quantitative analysis. A new LIBS quantitative analysis method based on the Robust Least Squares Support Vector Machine (RLS-SVM) regression model is proposed. The usual way to enhance the analysis accuracy is to improve the quality and consistency of the emission signal, such as by averaging the spectral signals or spectrum standardization over a number of laser shots. The proposed method focuses more on how to enhance the robustness of the quantitative analysis regression model. The proposed RLS-SVM regression model originates from the Weighted Least Squares Support Vector Machine (WLS-SVM) but has an improved segmented weighting function and residual error calculation according to the statistical distribution of measured spectral data. Through the improved segmented weighting function, the information on the spectral data in the normal distribution will be retained in the regression model while the information on the outliers will be restrained or removed. Copper elemental concentration analysis experiments of 16 certified standard brass samples were carried out. The average value of relative standard deviation obtained from the RLS-SVM model was 3.06% and the root mean square error was 1.537%. The experimental results showed that the proposed method achieved better prediction accuracy and better modeling robustness compared with the quantitative analysis methods based on Partial Least Squares (PLS) regression, standard Support Vector Machine (SVM) and WLS-SVM. It was also demonstrated that the improved weighting function had better comprehensive performance in model robustness and convergence speed, compared with the four known weighting functions.
Resumo:
Anterior segment optical coherent tomography (AS-OCT, Visante; Zeiss) is used to examine meridional variation in anterior scleral thickness (AST) and its association with refractive error, ethnicity and gender. Scleral cross-sections of 74 individuals (28 males; 46 females; aged between 18-40 years (27.7±5.3)) were sampled twice in random order in 8 meridians: [superior (S), inferior (I), nasal (N), temporal (T), superior-temporal (ST), superior-nasal (SN), inferior-temporal (IT) and inferior-nasal (IN)]. AST was measured in 1mm anterior-toposterior increments (designated the A-P distance) from the scleral spur (SS) over a 6mm distance. Axial length and refractive error were measured with a Zeiss IOLMaster biometer and an open-view binocular Shin-Nippon autorefractor. Intra- And inter-observer variability of AST was assessed for each of the 8 meridians. Mixed repeated measures ANOVAs tested meridional and A-P distance differences in AST with refractive error, gender and ethnicity. Only right eye data were analysed. AST (mean±SD) across all meridians and A-P distances was 725±46μm. Meridian SN was the thinnest (662±57μm) and I the thickest (806 ±60μm). Significant differences were found between all meridians (p<0.001), except S:ST, IT:IN, IT:N and IN:N. Significant differences between A-P distances were found except between SS and 6 mm and between 2 and 4mm. AST measurements at 1mm (682±48 μm) were the thinnest and at 6mm (818±49 μm) the thickest (p<0.001); a significant interaction occurred between meridians and A-P distances (p<0.001). AST was significantly greater (p<0.001) in male subjects but no significant differences were found between refractive error or ethnicity. Significant variations in AST occur with regard to meridian and distance from the SS and may have utility in selecting optimum sites for pharmaceutical or surgical intervention.
Resumo:
Purpose: The Shin-Nippon SRW-5000 is an open view autorefractor that superseded the Canon R-1 autorefractor in the mid-1990s and has been used widely in optometry and vision science laboratories. It has been used to measure refractive error, accommodation responses both statically and dynamically, off-axis refractive error, and adapted to measure pupil size. This paper presents an overview of the original 2001 clinical evaluation of the SRW-5000 in adults (Mallen et al., Ophthal Physiol Opt 2001; 21: 101) and provides an update on the use and modification of the instrument since the original publication. Recent findings: The SRW-5000 instrument, and the family of devices which followed, have shown excellent validity, repeatability, and utility in clinical and research settings. The instruments have also shown great potential for increased research functionality following a number of modifications. Summary: The SRW-5000 and its derivatives have been, and continue to be, of significant importance in our drive to understand myopia progression, myopia control techniques, and oculomotor function in human vision.