32 resultados para Markov Switching model
Resumo:
This research investigates the interrelationship between service characteristics and switching costs and makes two contributions to the service retailing literature: (1) As a means of better understanding the effectiveness of switching costs, the study suggests a two-dimensional typology of switching costs, including internal and external switching costs and (2) it reveals that the effect of these switching costs on customer loyalty is contingent upon four service characteristics (the IHIP characteristics of service). We carried out a meta-analytic review of the literature on the switching costs-customer loyalty link and created a hierarchical linear model using a sample of 1,694 customers from 51 service industries. Results reveal that external switching costs have a stronger average effect on customer loyalty than do internal switching costs. Moreover, we find that IHIP characteristics moderate the links between switching costs and customer loyalty. Thus, the link between external switching costs and customer loyalty is weaker in industries higher in the four service characteristics (as compared to industries lower in these characteristics), while the opposite moderating effect of service characteristics for the internal switching costs-loyalty link is noted. © 2014 New York University.
Resumo:
Markovian models are widely used to analyse quality-of-service properties of both system designs and deployed systems. Thanks to the emergence of probabilistic model checkers, this analysis can be performed with high accuracy. However, its usefulness is heavily dependent on how well the model captures the actual behaviour of the analysed system. Our work addresses this problem for a class of Markovian models termed discrete-time Markov chains (DTMCs). We propose a new Bayesian technique for learning the state transition probabilities of DTMCs based on observations of the modelled system. Unlike existing approaches, our technique weighs observations based on their age, to account for the fact that older observations are less relevant than more recent ones. A case study from the area of bioinformatics workflows demonstrates the effectiveness of the technique in scenarios where the model parameters change over time.