42 resultados para Markov Clustering, GPI Computing, PPI Networks, CUDA, ELPACK-R Sparse Format, Parallel Computing
Resumo:
In this paper, we study an area localization problem in large scale Underwater Wireless Sensor Networks (UWSNs). The limited bandwidth, the severely impaired channel and the cost of underwater equipment all makes the underwater localization problem very challenging. Exact localization is very difficult for UWSNs in deep underwater environment. We propose a Mobile DETs based efficient 3D multi-power Area Localization Scheme (3D-MALS) to address the challenging problem. In the proposed scheme, the ideas of 2D multi-power Area Localization Scheme(2D-ALS) [6] and utilizing Detachable Elevator Transceiver (DET) are used to achieve the simplicity, location accuracy, scalability and low cost performances. The DET can rise and down to broadcast its position. And it is assumed that all the underwater nodes underwater have pressure sensors and know their z coordinates. The simulation results show that our proposed scheme is very efficient. © 2009 IEEE.
Resumo:
With recent expansions in technology, mobile computing continues to play a vital role in all aspects of our lives. Digital technology tools such as Web browsing, media tracking, social media, and emailing have made mobile technology more than just a means of communication but has widespread use in business and social networks. Developments in Technologies for Human-Centric Mobile Computing and Applications is a comprehensive collection of knowledge and practice in the development of technologies in human –centric mobile technology. This book focuses on the developmental aspects of mobile technology; bringing together researchers, educators, and practitioners to encourage readers to think outside of the box.
Resumo:
A recent novel approach to the visualisation and analysis of datasets, and one which is particularly applicable to those of a high dimension, is discussed in the context of real applications. A feed-forward neural network is utilised to effect a topographic, structure-preserving, dimension-reducing transformation of the data, with an additional facility to incorporate different degrees of associated subjective information. The properties of this transformation are illustrated on synthetic and real datasets, including the 1992 UK Research Assessment Exercise for funding in higher education. The method is compared and contrasted to established techniques for feature extraction, and related to topographic mappings, the Sammon projection and the statistical field of multidimensional scaling.
Resumo:
With the features of low-power and flexible networking capabilities IEEE 802.15.4 has been widely regarded as one strong candidate of communication technologies for wireless sensor networks (WSNs). It is expected that with an increasing number of deployments of 802.15.4 based WSNs, multiple WSNs could coexist with full or partial overlap in residential or enterprise areas. As WSNs are usually deployed without coordination, the communication could meet significant degradation with the 802.15.4 channel access scheme, which has a large impact on system performance. In this thesis we are motivated to investigate the effectiveness of 802.15.4 networks supporting WSN applications with various environments, especially when hidden terminals are presented due to the uncoordinated coexistence problem. Both analytical models and system level simulators are developed to analyse the performance of the random access scheme specified by IEEE 802.15.4 medium access control (MAC) standard for several network scenarios. The first part of the thesis investigates the effectiveness of single 802.15.4 network supporting WSN applications. A Markov chain based analytic model is applied to model the MAC behaviour of IEEE 802.15.4 standard and a discrete event simulator is also developed to analyse the performance and verify the proposed analytical model. It is observed that 802.15.4 networks could sufficiently support most WSN applications with its various functionalities. After the investigation of single network, the uncoordinated coexistence problem of multiple 802.15.4 networks deployed with communication range fully or partially overlapped are investigated in the next part of the thesis. Both nonsleep and sleep modes are investigated with different channel conditions by analytic and simulation methods to obtain the comprehensive performance evaluation. It is found that the uncoordinated coexistence problem can significantly degrade the performance of 802.15.4 networks, which is unlikely to satisfy the QoS requirements for many WSN applications. The proposed analytic model is validated by simulations which could be used to obtain the optimal parameter setting before WSNs deployments to eliminate the interference risks.
Resumo:
IEEE 802.15.4 standard is a relatively new standard designed for low power low data rate wireless sensor networks (WSN), which has a wide range of applications, e.g., environment monitoring, e-health, home and industry automation. In this paper, we investigate the problems of hidden devices in coverage overlapped IEEE 802.15.4 WSNs, which is likely to arise when multiple 802.15.4 WSNs are deployed closely and independently. We consider a typical scenario of two 802.15.4 WSNs with partial coverage overlapping and propose a Markov-chain based analytical model to reveal the performance degradation due to the hidden devices from the coverage overlapping. Impacts of the hidden devices and network sleeping modes on saturated throughput and energy consumption are modeled. The analytic model is verified by simulations, which can provide the insights to network design and planning when multiple 802.15.4 WSNs are deployed closely. © 2013 IEEE.
Resumo:
Emerging vehicular comfort applications pose a host of completely new set of requirements such as maintaining end-to-end connectivity, packet routing, and reliable communication for internet access while on the move. One of the biggest challenges is to provide good quality of service (QoS) such as low packet delay while coping with the fast topological changes. In this paper, we propose a clustering algorithm based on minimal path loss ratio (MPLR) which should help in spectrum efficiency and reduce data congestion in the network. The vehicular nodes which experience minimal path loss are selected as the cluster heads. The performance of the MPLR clustering algorithm is calculated by rate of change of cluster heads, average number of clusters and average cluster size. Vehicular traffic models derived from the Traffic Wales data are fed as input to the motorway simulator. A mathematical analysis for the rate of change of cluster head is derived which validates the MPLR algorithm and is compared with the simulated results. The mathematical and simulated results are in good agreement indicating the stability of the algorithm and the accuracy of the simulator. The MPLR system is also compared with V2R system with MPLR system performing better. © 2013 IEEE.
Resumo:
Novel computing systems are increasingly being composed of large numbers of heterogeneous components, each with potentially different goals or local perspectives, and connected in networks which change over time. Management of such systems quickly becomes infeasible for humans. As such, future computing systems should be able to achieve advanced levels of autonomous behaviour. In this context, the system's ability to be self-aware and be able to self-express becomes important. This paper surveys definitions and current understanding of self-awareness and self-expression in biology and cognitive science. Subsequently, previous efforts to apply these concepts to computing systems are described. This has enabled the development of novel working definitions for self-awareness and self-expression within the context of computing systems.
Resumo:
In recent years, there has been an increas-ing interest in learning a distributed rep-resentation of word sense. Traditional context clustering based models usually require careful tuning of model parame-ters, and typically perform worse on infre-quent word senses. This paper presents a novel approach which addresses these lim-itations by first initializing the word sense embeddings through learning sentence-level embeddings from WordNet glosses using a convolutional neural networks. The initialized word sense embeddings are used by a context clustering based model to generate the distributed representations of word senses. Our learned represen-tations outperform the publicly available embeddings on 2 out of 4 metrics in the word similarity task, and 6 out of 13 sub tasks in the analogical reasoning task.
Resumo:
In recent years, there has been an increasing interest in learning a distributed representation of word sense. Traditional context clustering based models usually require careful tuning of model parameters, and typically perform worse on infrequent word senses. This paper presents a novel approach which addresses these limitations by first initializing the word sense embeddings through learning sentence-level embeddings from WordNet glosses using a convolutional neural networks. The initialized word sense embeddings are used by a context clustering based model to generate the distributed representations of word senses. Our learned representations outperform the publicly available embeddings on half of the metrics in the word similarity task, 6 out of 13 sub tasks in the analogical reasoning task, and gives the best overall accuracy in the word sense effect classification task, which shows the effectiveness of our proposed distributed distribution learning model.
Resumo:
This work looks into video quality assessment applied to the field of telecare and proposes an alternative metric to the more traditionally used PSNR based on the requirements of such an application. We show that the Pause Intensity metric introduced in [1] is also relevant and applicable to heterogeneous networks with a wireless last hop connected to a wired TCP backbone. We demonstrate through our emulation testbed that the impairments experienced in such a network architecture are dominated by continuity based impairments rather than artifacts, such as motion drift or blockiness. We also look into the implication of using Pause Intensity as a metric in terms of the overall video latency, which is potentially problematic should the video be sent and acted upon in real-time. We conclude that Pause Intensity may be used alongside the video characteristics which have been suggested as a measure of the overall video quality. © 2012 IEEE.
Resumo:
Energy efficiency is one of the most important performances of a wireless sensor network. In this paper, we show that choosing a proper transmission scheme given the channel and network conditions can ensure a high energy performance in different transmission environments. Based on the energy models we established for both cooperative and non-cooperative communications, the efficiency in terms of energy consumption per bit for different transmission schemes is investigated. It is shown that cooperative transmission schemes can outperform non-cooperative schemes in energy efficiency in severe channel conditions and when the source-destination distance is in a medium or long range. But the latter is more energy efficient than the former for short-range transmission. For cooperative transmission schemes, the number of transmission branches and the number of relays per branch can also be properly selected to adapt to the variations of the transmission environment, so that the total energy consumption can be minimized.
Resumo:
IEEE 802.11 standard is the dominant technology for wireless local area networks (WLANs). In the last two decades, the Distributed coordination function (DCF) of IEEE 802.11 standard has become the one of the most important media access control (MAC) protocols for mobile ad hoc networks (MANETs). The DCF protocol can also be combined with cognitive radio, thus the IEEE 802.11 cognitive radio ad hoc networks (CRAHNs) come into being. There were several literatures which focus on the modeling of IEEE 802.11 CRAHNs, however, there is still no thorough and scalable analytical models for IEEE 802.11 CRAHNs whose cognitive node (i.e., secondary user, SU) has spectrum sensing and possible channel silence process before the MAC contention process. This paper develops a unified analytical model for IEEE 802.11 CRAHNs for comprehensive MAC layer queuing analysis. In the proposed model, the SUs are modeled by a hyper generalized 2D Markov chain model with an M/G/1/K model while the primary users (PUs) are modeled by a generalized 2D Markov chain and an M/G/1/K model. The performance evaluation results show that the quality-of-service (QoS) of both the PUs and SUs can be statistically guaranteed with the suitable settings of duration of channel sensing and silence phase in the case of under loading.